DOI QR코드

DOI QR Code

Seismic performance of lightweight aggregate concrete columns subjected to different axial loads

  • Yeon-Back Jung (Hyundai Engineering and Construction) ;
  • Ju-Hyun Mun (Department of Architecture Engineering, Kyonggi University) ;
  • Keun-Hyeok Yang (Department of Architecture Engineering, Kyonggi University) ;
  • Chae-Rim Im (Department of Architectural Engineering, Kyonggi University, Graduate School)
  • 투고 : 2023.02.10
  • 심사 : 2023.09.26
  • 발행 : 2023.10.25

초록

Lightweight aggregate concrete (LWAC) has various advantages, but it has limitations in ensuring sufficient ductility as structural members such as reinforced concrete (RC) columns due to its low confinement effect of core concrete. In particular, the confinement effect significantly decreases as the axial load increases, but studies on evaluating the ductility of RC columns at high axial loads are very limited. Therefore, this study examined the effects of concrete unit weight on the seismic performance of RC columns subjected to constant axial loads applied with different values for each specimen. The column specimens were classified into all-lightweight aggregate concrete (ALWAC), sand-lightweight aggregate concrete (SLWAC), and normal-weight concrete (NWC). The amount of transverse reinforcement was specified for all the columns to satisfy twice the minimum amount specified in the ACI 318-19 provision. Test results showed that the normalized moment capacity of the columns decreased slightly with the concrete unit weight, whereas the moment capacity of LWAC columns could be conservatively estimated based on the procedure stipulated in ACI 318-19 using an equivalent rectangular stress block. Additionally, by applying the section lamina method, the axial load level corresponding to the balanced failure decreased with the concrete unit weight. The ductility of the columns also decreased with the concrete unit weight, indicating a higher level of decline under a higher axial load level. Thus, the LWAC columns required more transverse reinforcement than their counterpart NWC columns to achieve the same ductility level. Ultimately, in order to achieve high ductility in LWAC columns subjected to an axial load of 0.5, it is recommended to design the transverse reinforcement with twice the minimum amount specified in the ACI 318-19 provision.

키워드

과제정보

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIT) (No. NRF-2022R1A2B5B03002476).

참고문헌

  1. ACI Committee 211 (1998), Standard Practice for Selecting Proportions for Structural Lightweight Concrete (ACI 211.2-98), American Concrete Institute (ACI), Farmington Hills, Michigan, 
  2. ACI Committee 318 (2019), Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary, American Concrete Institute (ACI), Farmington Hills, Michigan,
  3. ASTM C138/C138M (2017), Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete, American Society for Testing and Materials, Philadelphia. 
  4. ASTM C39/C39M (2020), Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, American Society for Testing and Materials, Philadelphia. 
  5. ASTM E8/E8M (2016), Standard Test Methods for Tension Testing of Metallic Materials, American Society for Testing and Materials, Philadelphia. 
  6. Basset, R. and Uzumeri, S.M. (1986), "Effect of confinement on the behaviour of high-strength lightweight concrete columns", Can. J. Civil Eng., 13, 742-751. https://doi.org/10.1139/L86-109. 
  7. Divyah, N., Prakash, R., Srividhya, S. and Sivakumar, A. (2022), "Parametric study on lightweight concrete-encased short columns under axial compression-Comparison of design codes", Struct. Eng. Mech., 83(3), 387-400. https://doi.org/10.12989/sem.2022.83.3.387. 
  8. Elwood, K.J., Maffel, J., Riederer, K.A. and Telleen, A.K. (2009), "Improving column confinement Part 1: Assessment of design provisions", Concrete Int., 31(11), 32-39. 
  9. Elwood, K.J., Maffel, J., Riederer, K.A. and Telleen, A.K. (2009), "Improving column confinement part 2: Proposed new provisions for the ACI 318 building code", Concrete Int., 31(12), 41-48. 
  10. FEMA 356 (2000), Prestandard and Commentary for the Seismic Rehabilitation of Buildings, Federal Emergency Management Agency, Washington, DC, USA. 
  11. Gharehbaghi, S. (2018), "Damage controlled optimum seismic design of reinforced concrete framed structures", Struct. Eng. Mech., 65(1), 53-68. https://doi.org/10.12989/sem.2018.65.1.053. 
  12. Im, C.R., Yang, K.H., Kim, S. and Mun, J.H. (2022), "Flexural performance of lightweight aggregate concrete columns", Eng. Struct., 25, 1-11. https://doi.org/10.1680/jmacr.21.00138. 
  13. Lee, K.H. and Yang, K.H. (2018), "Proposal for compressive strength development model of lightweight aggregate concrete using expanded bottom ash and dredged soil granules", J. Arch. Inst. Korea Struct. Constr., 34(7), 19-26. https://doi.org/10.5659/JAIK_SC.2018.34.7.19. 
  14. Ministry of Construction and Transportation (2012), Korea Bridge Design Specifications (Limited State Design), Ministry of Construction and Transportation, Sejong, Korea. 
  15. Neville, A. (2011), Properties of Concrete, 5th Edition, Pearson Education Limited, Harlow, UK. 
  16. Prakash, R., Sudharshan, N., Raman, S.N., Divyah, N., Subramanian, C., Vijayaprabha, C. and Praveenkumar, S. (2021a), "Fresh and mechanical characteristics of roselle fibre reinforced self-compacting concrete incorporating fly ash and metakaolin", Constr. Build. Mater., 290, 1-14. https://doi.org/10.1016/j.conbuildmat.2021.123209. 
  17. Prakash, R., Thenmozhi, R. and Raman, S.N. (2019), "Mechanical characterisation and flexural performance of eco-friendly concrete produced with fly ash as cement replacement and coconut shell coarse aggregate", Int. J. Environ. Sustain. Develop., 18(2), 131-148. https://doi.org/10.1504/IJESD.2019.099491. 
  18. Prakash, R., Thenmozhi, R., Raman, S.N. and Subramanian, C. (2020a), "Characterization of eco-friendly steel fiber-reinforced concrete containing waste coconut shell as coarse aggregates and fly ash as partial cement replacement", Struct. Concrete, 21(1), 437-447. https://doi.org/10.1002/suco.201800355. 
  19. Prakash, R., Thenmozhi, R., Raman, S.N. and Subramanian, C. (2020b), "Fibre reinforced concrete containing waste coconut shell aggregate, fly ash and polypropylene fibre", Revista Facultad De Ingenieria Universidad De Antioquia, 94, 33-42. https://doi.org/10.17533/udea.redin.20190403. 
  20. Prakash, R., Thenmozhi, R., Raman, S.N., Subramanian, C. and Divyah, N. (2021b), "Mechanical characterisation of sustainable fibre-reinforced lightweight concrete incorporating waste coconut shell as coarse aggregate and sisal fibre", Int. J. Environ. Sci. Technol., 18, 1579-1590. https://doi.org/10.1007/s13762-020-02900-z. 
  21. Sakai, K. and Sheikh, S.A. (1989), "What do we know about confinement in reinforced concrete columns? A critical review of previous work and code provisions", ACI Struct. J., 86(2), 192-207. https://doi.org/10.14359/2705. 
  22. Shafigh, P., Aslam, M. and Yap, S.P. (2021), "Shear behaviour of lightweight aggregate concrete beams using palm-oil byproducts as coarse aggregate", Struct. Eng. Mech., 79(2), 141-155. https://doi.org/10.12989/sem.2021.79.2.141. 
  23. Sheikh, S.A. and Khoury, S.S. (1997), "A performance-based approach for the design of confining steel in tied columns", ACI Struct. J., 94(4), 421-431. https://doi.org/10.14359/493. 
  24. Shin, S.W. and Choi, M.S. (1998), "Applications and prospection of structural lightweight concrete", J. Korea Concrete Inst., 10(4), 16-26. https://doi.org/10.22636/MKCI.1998.10.4.16. 
  25. Wight, J.K. (2016), Reinforced Concrete: Mechanics and Design, 7th Edition, Pearson Education Limited, Harlow, UK. 
  26. Wu, T., Wei, H., Zhang, Y. and Liu, X. (2018), "Axial compressive behavior of lightweight aggregate concrete columns confined with transverse steel reinforcement", Adv. Mech. Eng., 10(3), 1-14. https://doi.org/10.1177/168781401876663. 
  27. Yan, G., Al-Mulali, M.Z., Madadi, A., Albaijan, I., Ali, H.E., Algarni, H., Le, B.N. and Assilzadeh, H. (2022), "Effect of perlite powder on properties of structural lightweight concrete with perlite aggregate", Struct. Eng. Mech., 84(3), 393-411. https://doi.org/10.12989/sem.2022.84.3.393. 
  28. Yang, K.H. (2012), "Flexural behavior of reinforced concrete columns using wire ropes as lateral reinforcement", Mag. Concrete Res., 64(3), 269-281. https://doi.org/10.1680/macr.10.00191. 
  29. Yang, K.H., Mun, J.H. and Im, C.R. (2022), "Flexural performance of lightweight concrete columns based on expanded bottom ash and dredged soil granules", Mag. Concrete Res., 74(17), 1-35. https://doi.org/10.1680/jmacr.21.00138. 
  30. Yong, Y.K., Nour, M.G. and Nawy, E.G. (1988), "Behavior of laterally confined high-strength concrete under axial loads", J. Struct. Div., ASCE, 114(ST2), 332-351. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:2(332). 
  31. Zhang, X., Deng, D., Lin, X., Yang, J. and Fu, L. (2019), "Mechanical performance of sand-lightweight concrete-filled steel tube stub column under axial compression", Struct. Eng. Mech., 69(6), 627-635. https://doi.org/10.12989/sem.2019.69.6.627. 
  32. Zhu, C., Cui, Y., Sun, L., Du, S., Wang, X. and Yu, H. (2021), "Mechanical properties of reinforced-concrete rocking columns based on damage resistance", Struct. Eng. Mech., 80(6), 737-747. https://doi.org/10.12989/sem.2021.80.6.737.