DOI QR코드

DOI QR Code

Cost-effectiveness dynamics and vibration of soft magnetoelastic plate near rectangular current-carrying conductors

  • 투고 : 2021.09.20
  • 심사 : 2023.06.21
  • 발행 : 2023.10.25

초록

Cost-effective high precision hybrid elements are presented in a hierarchical form for dynamic analysis of plates. The costs associated with controlling the vibrations of ferromagnetic plates can be minimized by adequate determination of the amount of electric current and magnetic field. In the present study, the effect of magnetic field and electric current on nonlinear vibrations of ferromagnetic plates is investigated. The general form of Lorentz forces and Maxwell's equations have been considered for the first time to present new relationships for electromagnetic interaction forces with ferromagnetic plates. In order to derive the governing nonlinear differential equations, the theory of third-order shear deformations of three-dimensional plates has been applied along with the von Kármán large deformation strain-displacement relations. Afterward, the nonlinear equations are discretized using the Galerkin method, and the effect of various parameters is investigated. According to the results, electric current and magnetic field have different effects on the equivalent stiffness of ferromagnetic plates. As the electric current increases and the magnetic field decreases, the equivalent stiffness of the plate decreases. This is a phenomenon reported here for the first time. Furthermore, the magnetic field has a more significant effect on the steady-state deflection of the plate compared to the electric current. Increasing the magnetic field and electric current by 10-times results in a reduction of about 350% and an increase of 3.8% in the maximum steady-state deflection, respectively. Furthermore, the nonlinear frequency decreases as time passes, and these changes become more intense as the magnetic field increases.

키워드

참고문헌

  1. Atalay, S., Inan, O., Kolat, V. and Izgi, T. (2021), "Influence of ferromagnetic ribbon width on q factor and magnetoelastic resonance frequency", Sensor., 2, 5-12. https://doi.org/10.12693/APhysPolA.139.159. 
  2. Azovtsev, A.V. and Pertsev, N.A. (2023), "Electrically excited magnetoelastic waves and magnetoacoustic resonance in ferromagnetic films with voltage-controlled magnetic anisotropy", Phys. Rev. B, 107(5), 05448. https://doi.org/10.1103/PhysRevB.107.054418. 
  3. Doedel, E.J., Champneys, A.R., Fairgrieve, T.F., Kuznetsov, Y.A., Sandstede, B. and Wang, X. (1998), "Auto97", Continuation and Bifurcation Software for Ordinary Differential Equations.
  4. Eringen, A.C. and Maugin, G.A. (2012), Electrodynamics of Continua I: Foundations and Solid Media, Springer Science & Business Media.
  5. Fallah, M. and Arab Maleki, V. (2021), "Piezoelectric energy harvesting using a porous beam under fluid-induced vibrations", Amirkabir J. Mech. Eng., 53(8), 4633-4648. https://doi.org/10.22060/mej.2021.18200.6780. 
  6. Hasanyan, D.J., Librescu, L. and Ambur, D.R. (2006), "Buckling and postbuckling of magnetoelastic flat plates carrying an electric current", Int. J. Solid. Struct., 43(16), 4971-4996. https://doi.org/10.1016/j.ijsolstr.2005.04.028. 
  7. Hoseinzadeh, M., Pilafkan, R. and Maleki, V.A. (2023), "Size-dependent linear and nonlinear vibration of functionally graded CNT reinforced imperfect microplates submerged in fluid medium", Ocean Eng., 268, 113257. 
  8. Hosseinian, A. and Firouz-Abadi, R. (2021), "Vibrations and stability analysis of double current-carrying strips interacting with magnetic field", Acta Mechanica, 232, 229-245.  https://doi.org/10.1007/s00707-020-02814-4
  9. Hu, Y. and Cao, T. (2023), "Magnetoelastic primary resonance of an axially moving ferromagnetic plate in an air gap field", Appl. Math. Mech., 118, 370-392. https://doi.org/10.1016/j.apm.2023.01.014. 
  10. Hu, Y. and Ma, B. (2019), "Magnetoelastic combined resonance and stability analysis of a ferromagnetic circular plate in alternating magnetic field", Appl. Math. Mech., 40(7), 925-942. https://doi.org/10.1007/s10483-019-2496-7. 
  11. Hu, Y., Cao, T. and Xie, M. (2022), "Magnetic-structure coupling dynamic model of a ferromagnetic plate parallel moving in airgap magnetic field", Acta Mechanica Sinica, 38(10), 522084. https://doi.org/10.1007/s10409-022-22084-x. 
  12. Hu, Y., Mu, Y. and Xie, M. (2023), "Magnetic-solid coupling nonlinear vibration of an axially moving thin plate under air-gap magnetic field", Int. J. Struct. Stab. Dyn., 2350177. ttps://doi.org/10.1142/S0219455423501778. 
  13. Hu, Y.D. and Li, J. (2008), "Magneto-elastic combination resonances analysis of current-conducting thin plate", Appl. Math. Mech., 29, 1053-1066. https://doi.org/10.1007/s10483-008-0809-y. 
  14. Ida, N. (2015), Engineering Electromagnetics, Springer .
  15. Ida, N. and Ida, N. (2015), "The static magnetic field", Eng. Electromagnet., 35, 383-426. https://doi.org/10.1007/978-3-319-07806-9_8. 
  16. Kedzia, P., Magnucki, K., Smyczynski, M. and Wstawska, I. (2019), "An influence of homogeneity of magnetic field on stability of a rectangular plate", Int. J. Struct. Stab. Dyn., 19(05), 1941003. https://doi.org/10.1142/S0219455419410037. 
  17. Kim, S., Yun, K., Kim, K., Won, C. and Ji, K. (2020), "A general nonlinear magneto-elastic coupled constitutive model for soft ferromagnetic materials", J. Magnet. Magnetic Mater., 500, 166406. https://doi.org/10.1016/j.jmmm.2020.166406. 
  18. Li, J. and Hu, Y. (2018), "Principal and internal resonance of rectangular conductive thin plate in transverse magnetic field", Theor. Appl. Mech. Lett., 8(4), 257-266. https://doi.org/10.1016/j.taml.2018.04.004. 
  19. Li, J., Hu, Y. and Wang, Y. (2018), "The magneto-elastic internal resonances of rectangular conductive thin plate with different size ratios", J. Mech., 34(5), 711-723. https://doi.org/10.1017/jmech.2017.30. 
  20. Minaei, M., Rezaee, M. and Arab Maleki, V. (2021), "Vibration analysis of viscoelastic carbon nanotube under electromagnetic fields based on the nonlocal Timoshenko beam theory", Iran. J. Mech. Eng. Trans. ISME, 23(2), 176-198. 
  21. Nasrabadi, M., Sevbitov, A.V., Maleki, V.A., Akbar, N. and Javanshir, I. (2022), "Passive fluid-induced vibration control of viscoelastic cylinder using nonlinear energy sink", Marine Struct., 81, 103116. https://doi.org/10.1016/j.marstruc.2021.103116. 
  22. Pathak, P., Arora, N. and Rudykh, S. (2022), "Magnetoelastic instabilities in soft laminates with ferromagnetic hyperelastic phases", Int. J. Mech. Sci., 213, 106862. https://doi.org/10.1016/j.ijmecsci.2021.106862. 
  23. Pourreza, T., Alijani, A., Maleki, V.A. and Kazemi, A. (2021), "Nonlinear vibration of nanosheets subjected to electromagnetic fields and electrical current", Adv. Nano Res., 10(5), 481-491. https://doi.org/10.12989/anr.2021.10.5.481. 
  24. Pourreza, T., Alijani, A., Maleki, V.A. and Kazemi, A. (2022), "The effect of magnetic field on buckling and nonlinear vibrations of Graphene nanosheets based on nonlocal elasticity theory", Int. J. Nano Dimens., 13(1), 54-70. 
  25. Reddy, J.N. (2006), Theory and Analysis of Elastic Plates and Shells, CRC Press. 
  26. Rezaee, M. and Arab Maleki, V. (2017), "Vibration analysis of fluid conveying viscoelastic pipes rested on non-uniform winkler elastic foundation", Modares Mech. Eng., 16(12), 87-94. 
  27. Rezaee, M. and Arab Maleki, V. (2019), "Passive vibration control of the fluid conveying pipes using dynamic vibration absorber", Amirkabir J. Mech. Eng., 51(3), 111-120. 
  28. Shih, Y.S. and Wang, Y.S. (2022), "Vibration and fatigue crack growth of a ferromagnetic and rectangular cracked plate subjected to a transverse magnetic field", Eng. Fract. Mech., 259, 108146. https://doi.org/10.1016/j.engfracmech.2021.108146. 
  29. Wei, L., Kah, S.A. and Ruilong, H. (2007), "Vibration analysis of a ferromagnetic plate subjected to an inclined magnetic field", Int. J. Mech. Sci., 49(4), 440-446. https://doi.org/10.1016/j.ijmecsci.2006.09.013. 
  30. Xue, C., Pan, E., Han, Q., Zhang, S. and Chu, H. (2011), "Nonlinear principal resonance of an orthotropic and magnetoelastic rectangular plate", Int. J. Nonlin. Mech., 46(5), 703-710. https://doi.org/10.1016/j.ijnonlinmec.2011.02.002. 
  31. Yuda, H., Peng, H. and Jinzhi, Z. (2015), "Strongly nonlinear subharmonic resonance and chaotic motion of axially moving thin plate in magnetic field", J. Comput. Nonlin. Dyn., 10(2), 021010. https://doi.org/10.1115/1.4027490. 
  32. Zhang, C., Wang, L., Eyvazian, A., Khan, A. and Sebaey, T.A. (2021), "Analytical solution for static and dynamic analysis of FGP cylinders integrated with FG-GPLs patches exposed to longitudinal magnetic field", Eng. Comput., 38, 2447-2465. https://doi.org/10.1007/s00366-021-01361-3.