References
- Atalay, S., Inan, O., Kolat, V. and Izgi, T. (2021), "Influence of ferromagnetic ribbon width on q factor and magnetoelastic resonance frequency", Sensor., 2, 5-12. https://doi.org/10.12693/APhysPolA.139.159.
- Azovtsev, A.V. and Pertsev, N.A. (2023), "Electrically excited magnetoelastic waves and magnetoacoustic resonance in ferromagnetic films with voltage-controlled magnetic anisotropy", Phys. Rev. B, 107(5), 05448. https://doi.org/10.1103/PhysRevB.107.054418.
- Doedel, E.J., Champneys, A.R., Fairgrieve, T.F., Kuznetsov, Y.A., Sandstede, B. and Wang, X. (1998), "Auto97", Continuation and Bifurcation Software for Ordinary Differential Equations.
- Eringen, A.C. and Maugin, G.A. (2012), Electrodynamics of Continua I: Foundations and Solid Media, Springer Science & Business Media.
- Fallah, M. and Arab Maleki, V. (2021), "Piezoelectric energy harvesting using a porous beam under fluid-induced vibrations", Amirkabir J. Mech. Eng., 53(8), 4633-4648. https://doi.org/10.22060/mej.2021.18200.6780.
- Hasanyan, D.J., Librescu, L. and Ambur, D.R. (2006), "Buckling and postbuckling of magnetoelastic flat plates carrying an electric current", Int. J. Solid. Struct., 43(16), 4971-4996. https://doi.org/10.1016/j.ijsolstr.2005.04.028.
- Hoseinzadeh, M., Pilafkan, R. and Maleki, V.A. (2023), "Size-dependent linear and nonlinear vibration of functionally graded CNT reinforced imperfect microplates submerged in fluid medium", Ocean Eng., 268, 113257.
- Hosseinian, A. and Firouz-Abadi, R. (2021), "Vibrations and stability analysis of double current-carrying strips interacting with magnetic field", Acta Mechanica, 232, 229-245. https://doi.org/10.1007/s00707-020-02814-4
- Hu, Y. and Cao, T. (2023), "Magnetoelastic primary resonance of an axially moving ferromagnetic plate in an air gap field", Appl. Math. Mech., 118, 370-392. https://doi.org/10.1016/j.apm.2023.01.014.
- Hu, Y. and Ma, B. (2019), "Magnetoelastic combined resonance and stability analysis of a ferromagnetic circular plate in alternating magnetic field", Appl. Math. Mech., 40(7), 925-942. https://doi.org/10.1007/s10483-019-2496-7.
- Hu, Y., Cao, T. and Xie, M. (2022), "Magnetic-structure coupling dynamic model of a ferromagnetic plate parallel moving in airgap magnetic field", Acta Mechanica Sinica, 38(10), 522084. https://doi.org/10.1007/s10409-022-22084-x.
- Hu, Y., Mu, Y. and Xie, M. (2023), "Magnetic-solid coupling nonlinear vibration of an axially moving thin plate under air-gap magnetic field", Int. J. Struct. Stab. Dyn., 2350177. ttps://doi.org/10.1142/S0219455423501778.
- Hu, Y.D. and Li, J. (2008), "Magneto-elastic combination resonances analysis of current-conducting thin plate", Appl. Math. Mech., 29, 1053-1066. https://doi.org/10.1007/s10483-008-0809-y.
- Ida, N. (2015), Engineering Electromagnetics, Springer .
- Ida, N. and Ida, N. (2015), "The static magnetic field", Eng. Electromagnet., 35, 383-426. https://doi.org/10.1007/978-3-319-07806-9_8.
- Kedzia, P., Magnucki, K., Smyczynski, M. and Wstawska, I. (2019), "An influence of homogeneity of magnetic field on stability of a rectangular plate", Int. J. Struct. Stab. Dyn., 19(05), 1941003. https://doi.org/10.1142/S0219455419410037.
- Kim, S., Yun, K., Kim, K., Won, C. and Ji, K. (2020), "A general nonlinear magneto-elastic coupled constitutive model for soft ferromagnetic materials", J. Magnet. Magnetic Mater., 500, 166406. https://doi.org/10.1016/j.jmmm.2020.166406.
- Li, J. and Hu, Y. (2018), "Principal and internal resonance of rectangular conductive thin plate in transverse magnetic field", Theor. Appl. Mech. Lett., 8(4), 257-266. https://doi.org/10.1016/j.taml.2018.04.004.
- Li, J., Hu, Y. and Wang, Y. (2018), "The magneto-elastic internal resonances of rectangular conductive thin plate with different size ratios", J. Mech., 34(5), 711-723. https://doi.org/10.1017/jmech.2017.30.
- Minaei, M., Rezaee, M. and Arab Maleki, V. (2021), "Vibration analysis of viscoelastic carbon nanotube under electromagnetic fields based on the nonlocal Timoshenko beam theory", Iran. J. Mech. Eng. Trans. ISME, 23(2), 176-198.
- Nasrabadi, M., Sevbitov, A.V., Maleki, V.A., Akbar, N. and Javanshir, I. (2022), "Passive fluid-induced vibration control of viscoelastic cylinder using nonlinear energy sink", Marine Struct., 81, 103116. https://doi.org/10.1016/j.marstruc.2021.103116.
- Pathak, P., Arora, N. and Rudykh, S. (2022), "Magnetoelastic instabilities in soft laminates with ferromagnetic hyperelastic phases", Int. J. Mech. Sci., 213, 106862. https://doi.org/10.1016/j.ijmecsci.2021.106862.
- Pourreza, T., Alijani, A., Maleki, V.A. and Kazemi, A. (2021), "Nonlinear vibration of nanosheets subjected to electromagnetic fields and electrical current", Adv. Nano Res., 10(5), 481-491. https://doi.org/10.12989/anr.2021.10.5.481.
- Pourreza, T., Alijani, A., Maleki, V.A. and Kazemi, A. (2022), "The effect of magnetic field on buckling and nonlinear vibrations of Graphene nanosheets based on nonlocal elasticity theory", Int. J. Nano Dimens., 13(1), 54-70.
- Reddy, J.N. (2006), Theory and Analysis of Elastic Plates and Shells, CRC Press.
- Rezaee, M. and Arab Maleki, V. (2017), "Vibration analysis of fluid conveying viscoelastic pipes rested on non-uniform winkler elastic foundation", Modares Mech. Eng., 16(12), 87-94.
- Rezaee, M. and Arab Maleki, V. (2019), "Passive vibration control of the fluid conveying pipes using dynamic vibration absorber", Amirkabir J. Mech. Eng., 51(3), 111-120.
- Shih, Y.S. and Wang, Y.S. (2022), "Vibration and fatigue crack growth of a ferromagnetic and rectangular cracked plate subjected to a transverse magnetic field", Eng. Fract. Mech., 259, 108146. https://doi.org/10.1016/j.engfracmech.2021.108146.
- Wei, L., Kah, S.A. and Ruilong, H. (2007), "Vibration analysis of a ferromagnetic plate subjected to an inclined magnetic field", Int. J. Mech. Sci., 49(4), 440-446. https://doi.org/10.1016/j.ijmecsci.2006.09.013.
- Xue, C., Pan, E., Han, Q., Zhang, S. and Chu, H. (2011), "Nonlinear principal resonance of an orthotropic and magnetoelastic rectangular plate", Int. J. Nonlin. Mech., 46(5), 703-710. https://doi.org/10.1016/j.ijnonlinmec.2011.02.002.
- Yuda, H., Peng, H. and Jinzhi, Z. (2015), "Strongly nonlinear subharmonic resonance and chaotic motion of axially moving thin plate in magnetic field", J. Comput. Nonlin. Dyn., 10(2), 021010. https://doi.org/10.1115/1.4027490.
- Zhang, C., Wang, L., Eyvazian, A., Khan, A. and Sebaey, T.A. (2021), "Analytical solution for static and dynamic analysis of FGP cylinders integrated with FG-GPLs patches exposed to longitudinal magnetic field", Eng. Comput., 38, 2447-2465. https://doi.org/10.1007/s00366-021-01361-3.