DOI QR코드

DOI QR Code

Evaluation of unilateral buckling of steel plates in composite concrete-steel shear walls

  • Received : 2022.12.30
  • Accepted : 2023.09.05
  • Published : 2023.10.25

Abstract

To increase the stiffness and strength of a reinforced concrete shear wall, steel plates are bolted to the sides of the wall. The general behavior of a composite concrete-steel shear wall is dependent on the buckling of the steel plates that should be prevented. In this paper, the unilateral buckling of steel plates of a composite shear wall is studied using the Rayleigh-Ritz method. To model the unilateral buckling of steel plate, the restraining concrete wall is described as an elastic foundation with high stiffness in compression and zero stiffness in tension. To consider the effect of bolt connections on the plate's buckling, a constrained optimization problem is solved by using Lagrange multipliers method. This process is used to obtain the critical elastic local buckling coefficients of unilaterally-restrained steel plates with various numbers of bolts, subjected to pure compression, bending and shear loading, and the interaction between them. Using these results, the spacing between shear bolts in composite steel plate shear walls is estimated and compared with the results of the AISC seismic provisions (2016). The results show that the AISC seismic provisions(2016) are overly conservative in obtaining the spacing between shear bolts.

Keywords

References

  1. Akiyama, H., Sekimoto, H., Fukihara, M., Nakanishi, K. and Hara, K. (1991), "A compression and shear loading tests of concrete filled steel bearing wall", Struct. Mech. React. Technol., 13-18.
  2. Arabzade, A., Moharami, H. and Ayazi, A. (2011), "Local elastic buckling coefficients of steel plates in composite steel plate shear walls", Scientia Iranica, 18(1), 9-15. https://doi.org/10.1016/j.scient.2011.03.002.
  3. Astaneh-Asl, A. (2001), Seismic Behavior and Design of Steel Shear Walls, Moraga, Steel TIPS Report, CA.
  4. Choi, B.J. and Han, H.S. (2009), "An experiment on compressive profile of the unstiffened steel plate-concrete structures under compression loading", Steel Compos. Struct., 9(6), 519-534. https://doi.org/10.12989/scs.2009.9.6.519.
  5. Dayyani, I., Moore, M. and Shahidi, A. (2013), "Unilateral buckling of point-restrained triangular plates", Thin Wall. Struct., 66, 1-8. https://doi.org/10.1016/j.tws.2013.01.007.
  6. Dong, J., Ma, X., Zhuge, Y. and Mills, J.E. (2018), "Local buckling of thin plate on tensionless elastic foundations under interactive uniaxial compression and shear", Theor. Appl. Mech. Lett., 8(2), 75-82. https://doi.org/10.1016/j.taml.2018.02.003.
  7. Dong, J., Ma, X., Zhuge, Y. and Mills, J.E. (2018), "Unilateral contact buckling behaviour of orthotropic plates subjected to combined in-plane shear and bending", Int. J. Solid. Struct., 150, 135-153. https://doi.org/10.1016/j.ijsolstr.2018.06.011.
  8. Dong, J., Zhuge, Y., Mills, J.E. and Ma, X. (2016), "Local buckling of profiled skin sheets resting on tensionless elastic foundations under uniaxial compression", Thin Wall. Struct., 103, 81-89. https://doi.org/10.1016/j.tws.2016.02.009.
  9. Dong, J., Zhuge, Y., Mills, J.E. and Ma, X. (2016), "Local buckling of profiled skin sheets resting on tensionless elastic foundations under in-plane shear loading", Eur. J. Mech.-A/Solid., 58, 131-139. https://doi.org/10.1016/j.euromechsol.2016.01.008.
  10. Eltayeb, E., Ma, X., Zhuge, Y., Xiao, J. and Youssf, O. (2022), "Composite walls Composed of profiled steel skin and foam rubberized concrete subjected to eccentric compressions", J. Build. Eng., 46, 103715. https://doi.org/10.1016/j.jobe.2021.103715.
  11. Eltayeb, E., Ma, X., Zhuge, Y., Youssf, O., Mills, J.E. and Xiao, J. (2020), "Structural behaviour of composite panels made of profiled steel sheets and foam rubberised concrete under monotonic and cyclic shearing loads", Thin Wall. Struct., 151, 106726. https://doi.org/10.1016/j.tws.2020.106726.
  12. Eltayeb, E., Ma, X., Zhuge, Y., Youssf, O., Mills, J.E., Xiao, J. and Singh, A. (2020), "Structural performance of composite panels made of profiled steel skins and foam rubberised concrete under axial compressive loads", Eng. Struct., 211, 110448. https://doi.org/10.1016/j.engstruct.2020.110448.
  13. Hedayati, P., Azhari, M., Shahidi, A.R. and Bradford, M.A. (2007), "On the use of the lagrange multiplier technique for the unilateral local buckling of point-restrained plates, with application to side-plated concrete beams in structural retrofit", Struct. Eng. Mech., 26(6), 673-685. https://doi.org/10.12989/sem.2007.26.6.673.
  14. Huang, M.H. and Thambiratnam, D.P. (2001), "Analysis of plate resting on elastic supports and elastic foundation by finite strip method", Comput. Struct., 79(29-30), 2547-2557. https://doi.org/10.1016/S0045-7949(01)00134-1.
  15. Kanchi, M., Kitano, T., Sugawara, R. and Hirakawa, K. (1996), "Experimental study on a concrete filled steel structure Part. 2 Compressive Tests (1)", Summary of Technical Papers of Annual Meeting, Architectural Institute of Japan, Tokyo, Japan.
  16. Li, D., Smith, S. and Ma, X. (2016), "End condition effect on initial buckling performance of thin plates resting on tensionless elastic or rigid foundations", Int. J. Mech. Sci., 105, 83-89. https://doi.org/10.1016/j.ijmecsci.2015.11.001.
  17. Long, Y.L. and Zeng, L. (2018), "A refined model for local buckling of rectangular CFST columns with bindig bar", Thin Wall. Struct., 132, 431-441. https://doi.org/10.1016/j.tws.2018.09.019.
  18. Long, Y.L., Wan, J. and Cai, J. (2016), "Theoretical study on local buckling of rectangular CFT columns under eccentric compression", J. Constr. Steel Res., 120, 70-80. http://doi.org/10.1016/j.jcsr.2015.12.029.
  19. Ma, X., Butterworth, J. and Clifton, C. (2008), "Initial compressive buckling of clamped plates resting on tensionless elastic or rigid foundations", J. Eng. Mech., 134(6), 514-518. https://doi.org/10.1061/(ASCE)0733-9399(2008)134:6(514).
  20. Ma, X., Butterworth, J. and Clifton, C. (2011), "Shear buckling of infinite plates resting on tensionless elastic foundations", Eur. J. Mech.-A/Solid., 30(6), 1024-1027. https://doi.org/10.1016/j.euromechsol.2011.06.010.
  21. Ma, X., Butterworth, J.W. and Clifton, G.C. (2008), "Unilateral contact buckling of lightly profiled skin sheets under compressive or shearing loads", Int. J. Solid. Struct., 45(3-4), 840-849. https://doi.org/10.1016/j.ijsolstr.2007.09.006.
  22. Mohammadi, M., Farajpour, A., Moradi, A. and Ghayour, M. (2014), "Shear buckling of orthotropic rectangular graphene sheet embedded in an elastic medium in thermal environment", Compos. Part B: Eng., 56, 629-637. https://doi.org/10.1016/j.compositesb.2013.08.060.
  23. Qin, Y., Du, E.F., Li, Y.W. and Zhang, J.C. (2018), "Local buckling of steel plates in composite structures under combined bending and compression", ISIJ Int., 58(11), 2133-2141. https://doi.org/10.2355/isijinternational.ISIJINT-2018-202.
  24. Qin, Y., Shu, G.P., Du, E.F. and Lu, R.H. (2018), "Buckling analysis of elastically-restrained steel plates under eccentric compression", Steel Compos. Struct., 29(3), 379-389. https://doi.org/10.12989/scs.2018.29.3.379.
  25. Ridha, M.M., Li, D., Clifton, G.C. and Ma, X. (2019), "Structural behavior of composite panels made of lightly profiled steel skins and lightweight concrete under concentric and eccentric loads", J. Struct. Eng., 145(10), 04019093. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002380.
  26. Sato, K. (1992), "Elastic buckling of incomplete composite plates", J. Eng. Mech., 118(1), 1-19. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:1(1).
  27. She, G.L., Ren, Y.R. and Yan, K.M. (2019), "On snap-buckling of porous FG curved nanobeams", Acta Astronautica, 161, 475-484. https://doi.org/10.1016/j.actaastro.2019.04.010.
  28. Shi, J., Guo, L. and Gao, S. (2022), "Study on the buckling behavior of steel plate composite walls with diamond arranged studs under axial compression", J. Build. Eng., 50, 104185. http://doi.org/10.1016/j.jobe.2022.104185.
  29. Smith, S.T., Bradford, M.A. and Oehlers, D.J. (1999), "Elastic buckling of unilaterally constrained rectangular plates in pure shear", Eng. Struct., 21(5), 443-453. https://doi.org/10.1016/S0141-0296(97)00218-6.
  30. Smith, S.T., Bradford, M.A. and Oehlers, D.J. (1999), "Numerical convergence of simple and orthogonal polynomials for the unilateral plate-buckling problem using the Rayleigh-Ritz method", Int. J. Numer. Meth. Eng., 44(11), 1685-1707. https://doi.org/10.1002/(SICI)1097-0207(19990420)44:11<1685::AID-NME562>3.0.CO;2-9.
  31. Smith, S.T., Bradford, M.A. and Oehlers, D.J. (2000), "Unilateral buckling of elastically restrained rectangular mild steel plates", Comput. Mech., 26(4), 317-324. https://doi.org/10.1007/s004660000153.
  32. Takeuchi, M., Narikawa, M., Matsuo, I., Hara, K. and Usami, S. (1998), "Study on a concrete filled structure for nuclear power plants", Nucl. Eng. Des., 179(2), 209-223. https://doi.org/10.1016/S0029-5493(97)00282-3.
  33. The AISC Seismic Provisions (2005), Seismic Provisions for Structural Steel Buildings Committee on Specifications, ANSI/AISC 341-05, AISC, Chicago, Illinois, USA.
  34. The AISC Seismic Provisions (2016), Seismic Provisions for Structural Steel Buildings Committee on Specifications, ANSI/AISC 341-16, Chicago, Illinois, USA.
  35. Usami, S., Akiyama, H., Narikawa, M., Hara, K., Takeuchi, M. and Sasaki, N. (1995), "Study on a concrete filled steel structure for nuclear power plants (Part 2). Compressive loading tests on wall members", Transaction of 13th Structural Mechanicsin Reactor Technology (SMiRT-13), 21-26.
  36. Uy, B. and Bradford, M.A. (1995), "Local buckling of thin steel plates in composite construction: Experimental and theoretical study", Proc. Inst. Civil Eng.-Struct. Build., 110(4), 426-440. https://doi.org/10.1680/istbu.1995.28060.
  37. Wright, H.D. (1993), "Buckling of plates in contact with a rigid medium", Struct. Eng., 71(12), 209-215.
  38. Wright, H.D. (1995), "Local stability of filled and encased steel sections", J. Struct. Eng., 121(10), 1382-1388. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:10(1382).
  39. Wright, H.D., Oduyemi, T.O.S. and Evans, H.R. (1991), "The design of double skin composite elements", J. Constr. Steel Res., 19(2), 111-132. http://doi.org/10.1016/0143-974x(91)90037-2.
  40. Yang, Y., Liu, J. and Fan, J. (2016), "Buckling behavior of double-skin composite walls: An experimental and modeling study", J. Constr. Steel Res., 121(2), 126-135. https://doi.org/10.1016/j.jcsr.2016.01.019.
  41. Zhang, K., Varma, A.H., Malushte, S.R. and Gallocher, S. (2014). "Effect of shear connectors on local buckling and composite action in steel concrete composite walls", Nucl. Eng. Des., 269, 231-239. http://doi.org/10.1016/j.nucengdes.2013.08.035.
  42. Zhao, Y., Li, Z., Tang, Z. and Ma, H. (2022), "Compressive behavior of double-skin composite walls considering local buckling and post-buckling effect", J. Constr. Steel Res., 197, 107496. https://doi.org/10.1016/j.jcsr.2022.107496.