DOI QR코드

DOI QR Code

Impact and post-impact of ring supports: Eigenfrequency response at nano-scale

  • Madiha Ghamkhar (Mathematics and Statistics Department, University of Agriculture) ;
  • MohamedA. Khadimallah (Department of Civil Engineering, College of Engineering inAl-Kharj, Prince Sattam BinAbdulaziz University) ;
  • Muzamal Hussain (Department of Mathematics, Govt. College University Faisalabad) ;
  • Abdelouahed Tounsi (YFL (Yonsei Frontier Lab), Yonsei University)
  • Received : 2021.07.11
  • Accepted : 2023.09.05
  • Published : 2023.10.25

Abstract

In this paper, frequencies of zigzag structure of carbon nanotubes isinvestigated based on Donnell shell theory. These tubes are wrapped with the ring supports in the axial direction. The fundamental frequency curves displayed in article show the dependence of vibrations attributes to zigzag single walled carbon nanotubes. Various zigzag indices are introduced against the variation of length to predict the vibration. Also, the influence of ring supports is sketched with proposed structure for frequency analysis. The frequencies of zigzag tube decreases as the length increases. It is observed that the frequencies decreases with ring support and have higher frequencies without ring. The problem is formulated using Partial Differential Equation. Three expressions of modal deformation displacement functions is used for the elimination of temporal variation to form the solution in the eigen from. For the stability of present study the results are compared with experimentally and numerically in the open text.

Keywords

Acknowledgement

This study is supported via funding from Prince Satam bin Abdulaziz University project number (PSAU/2023/R/1444).

References

  1. Ajayan, P.M., Schadler, L.S., Giannaris, C. and Rubio, A. (2000), "Single-walled carbon nanotube polymer composites: strength and weakness", Adv. Mater., 12, 750-753. https://doi.org/10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO;2-6.
  2. Ansari, R. and Rouhi, H. (2013), "Nonlocal analytical Flugge shell model for the vibrations of double-walled carbon nanotubes with different end conditions", Int. J. Appl. Mech., 80, 021006-1. https://doi.org/10.1142/S179329201250018X.
  3. Azrar, A., Azrar, L. and Aljinaidi, A.A. (2011), "Length scale effect analysis on vibration behavior of single-walled Carbon Nanotubes with arbitrary boundary conditions", Revue de Mecanique Applique et Theorique, 2, 475-484.
  4. Bahrami, A. and Teimourian, A. (2016), "Study on the effect of small scale on the wave reflection in carbon nanotubes using nonlocal Timoshenko beam theory and wave propagation approach", Compos. Part B: Eng., 91, 492-504. https://doi.org/10.1016/j.compositesb.2016.02.004.
  5. Duan, W.H., Wang, C.M. and Zhang, Y.Y. (2007), "Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamic", J. Appl. Phys., 101(2), 024305. https://doi.org/10.1063/1.2423140.
  6. Esmaeili, M. and Tadi Beni, Y. (2019), "Vibration and buckling analysis of functionally graded flexoelectric smart beam", J. Appl. Comput. Mech., 5(5), 900-917. https://doi.org/10.22055/JACM.2019.27857.1439.
  7. Fereidoon, A., Rafiee, R. and Moghadam, R.M. (2013), "A modal analysis of carbon-nanotube-reinforced polymer by using a multiscale finite-element method", Mech. Compos. Mater., 49(3), 325-332. https://doi.org/10.1007/s11029-013-9350-6.
  8. Flugge, S. (1973), Stresses in Shells, 2nd Edition, Springer, Berlin. 
  9. Gao, Y. and An, L. (2010), "A nonlocal elastic anisotropic shell model for microtubule buckling behaviors in cytoplasm", Physica E: Low Dimens. Syst. Nanostr., 42(9), 2406-2415. https://doi.org/10.1016/j.bbrc.2009.07.042.
  10. Gibson, R.F., Ayorinde, E.O. and Wen, Y.F. (2007), "Vibrations of carbon nanotubes and their composites: A review", Compos. Sci. Technol., 67(1), 1-28. https://doi.org/10.1016/j.compscitech.2006.03.031.
  11. Han, J., Globus, A., Jaffe, R. and Deardorff, G. (1997), "Molecular dynamics simulations of carbon nanotube-based gears", Nanotechnol., 8(3), 95. https://doi.org/10.1088/0957-4484/8/3/001.
  12. Heydarpour, Y., Aghdam, M.M. and Malekzadeh, P. (2014), "Free vibration analysis of rotating functionally graded carbon nanotube-reinforced composite truncated conical shells", Compos. Struct., 117, 187-200. http://doi.org/10.1016/j.compstruct.2014.06.023.
  13. Hussain, M. and Naeem, M.N. (2018), "Vibration of single-walled carbon nanotubes based on Donnell shell theory using wave propagation approach", Novel Nanomater.-Synthes. Appl., 78-90. http://doi.org/10.5772/intechopen.73503.
  14. Hussain, M., Naeem, M.N., Shahzad, A. and He, M. (2017), "Vibrational behavior of single-walled carbon nanotubes based on cylindrical shell model using wave propagation approach", AIP Adv., 7(4), 045114. https://doi.org/10.1063/1.4979112.
  15. Jorio, A., Saito, R., Hafner, J.H., Lieber, C.M., Hunter, D.M., McClure, T., ... & Dresselhaus, M.S. (2001), "Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering", Phys. Rev. Lett., 86(6), 1118. https://doi.org/10.1103/PhysRevLett.86.1118.
  16. Kar, V.R., Panda, S.K. and Pandey, H.K. (2018), "Numerical study of temperature dependent eigenfrequency responses of tilted functionally graded shallow shell structures", Struct. Eng. Mech., 68(5), 527-536. https://doi.org/10.12989/sem.2018.68.5.527.
  17. Kocal, T. and Akbarov, S.D. (2019), "The influence of the rheological parameters on the dispersion of the flexural waves in a viscoelastic bi-layered hollow cylinder", Struct. Eng. Mech., 71(5), 577-601. https://doi.org/10.12989/sem.2019.71.5.577.
  18. Koochi, A. and Goharimanesh, M. (2021), "Nonlinear oscillations of CNT nano-resonator based on nonlocal elasticity: The energy balance method", Report. Mech. Eng., 2(1), 41-50. https://doi.org/10.31181/rme200102041g
  19. Kotakoski, J., Krasheninnikov, A.V. and Nordlund, K. (2006), "Energetics, structure, and long-range interaction of vacancy-type defects in carbon nanotubes: Atomistic simulations", Phys. Rev. B, 74, 245420/1-5. https://doi.org/10.12989/scs.2018.28.1.099.
  20. Kulathunga, D.D.T.K., Ang, K.K. and Reddy, J.N. (2009), "Accurate modeling of buckling of single-and double-walled carbon nanotubes based on shell theories", J. Phys.: Condens. Mat., 21(43), 435301. https://doi.org/10.1088/0953-8984/21/43/435301.
  21. Loy, C.T., Lam, K.Y. and Reddy, J.N. (1999), "Vibration of functionally graded cylindrical shells", Int. J. Mech. Sci., 41, 309-324. https://doi.org/10.1016/S0020-7403(98)00054-X.
  22. Moghadam, R.M., Hosseini, S.A. and Salehi, M. (2014), "The influence of Stone-Thrower-Wales defect on vibrational characteristics of single-walled carbon nanotubes incorporating Timoshenko beam element", Physica E: Low Dimens. Syst. Nanostr., 62, 80-89. https://doi.org/10.1016/j.physe.2014.04.008.
  23. Ouakad, H.M., Valipour, A., Zur, K.K., Sedighi, H.M. and Reddy, J.N. (2020), "On the nonlinear vibration and static deflection problems of actuated hybrid nanotubes based on the stress-driven nonlocal integral elasticity", Mech. Mater., 148, 103532. https://doi.org/10.1016/j.mechmat.2020.103532.
  24. Paliwal, D.N., Kanagasabapathy, H. and Gupta, K.M. (1995), "The large deflection of an orthotropic cylindrical shell on a Pasternak foundation", Compos. Struct., 31(1), 31-37. https://doi.org/10.1016/0263-8223(94)00068-9.
  25. Pandey, P. and Dahiya, M. (2016), "Carbon nanotubes: Types, methods of preparation and applications", Carbon, 1, 4. https://doi.org/10.5772/intechopen.92995.
  26. Rafiee, R. and Moghadam, R.M. (2012), "Simulation of impact and post-impact behavior of carbon nanotube reinforced polymer using multi-scale finite element modeling", Comput. Mater. Sci., 63, 261-268. https://doi.org/10.1016/j.commatsci.2012.06.010.
  27. Rakrak, K., Zidour, M., Heireche, H., Bousahla, A.A. and Chemi, A. (2016), "Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory", Adv. Nano Res., 4(1), 31-44. http://doi.org/10.12989/anr.2016.4.1.031.
  28. Rastogi, V., Yadav, P., Bhattacharya, S.S., Mishra, A.K., Verma, N., Verma, A. and Pandit, J.K. (2014), "Carbon nanotubes: an emerging drug carrier for targeting cancer cells", J. Drug Delivery, 1, 66-69. https://doi.org/10.1155/2014/670815.
  29. Rouhi, H., Ansari, R. and Arash, B. (2013), "Vibration analysis of double-walled carbon nanotubes based on the non-local donnell shell via a new numerical approach", Trans. Mech. Eng., 37(M2), 91-105.
  30. Rysaeva, L.K., Bachurin, D.V., Murzaev, R.T., Abdullina, D.U., Korznikova, E.A., Mulyukov, R.R. and Dmitriev, S.V. (2020), "Evolution of the carbon nanotube bundle structure under biaxial and shear strains", Facta Universitatis, Ser.: Mech. Eng., 18(4), 525-536. http://doi.org/10.22190/FUME201005043R.
  31. Sadoughifar, A., Farhatnia, F., Izadinia, M. and Talaeetaba, S.B. (2020), "Size-dependent buckling behaviour of FG annular/circular thick nanoplates with porosities resting on Kerr foundation based on new hyperbolic shear deformation theory", Struct. Eng. Mech., 73(3), 225. https://doi.org/10.12989/sem.2020.73.3.225.
  32. Saito, N., Haniu, H., Usui, Y., Aoki, K., Hara, K., Takanashi, S., ... & Endo, M. (2014), "Safe clinical use of carbon nanotubes as innovative biomaterials", Chem. Rev., 114, 6040-6079. https://doi.org/10.1021/cr400341h.
  33. Sedighi, H.M. and Daneshmand, F. (2014), "Static and dynamic pull-in instability of multi-walled carbon nanotube probes by He's iteration perturbation method", J. Mech. Sci. Technol., 28, 3459-3469. https://doi.org/10.1007/s12206-014-0807-x.
  34. Selim, M.M. (2010), "Torsional vibration of carbon nanotubes under initial compression stress", Brazil. J. Phys., 40(3), 283-287. http://doi.org/10.1590/S0103-97332010000300004.
  35. Semmah, A., Heireche, H., Bousahla, A.A. and Toumsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by nonlocal FSDT", Adv. Nano Res., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089.
  36. Shamshirsaz, M., Sharafi, S., Rahmatian, J., Rahmatian, S. and Sepehry, N. (2020), "A semi-analytical mesh-free method for 3D free vibration analysis of bi-directional FGP circular structures subjected to temperature variation", Struct. Eng. Mech., 73(4), 407. https://doi.org/10.12989/sem.2020.73.4.407.
  37. Swaddiwudhipong, S., Tian, J. and Wang, CM. (1995), "Vibration of cylindrical shells with ring supports", J. Sound Vib., 187, 69-93. https://doi.org/10.1016/S0020-7403(96)00035-5.
  38. Torabi, J. and Ansari, R. (2018), "Thermally induced mechanical analysis of temperature-dependent FG-CNTRC conical shells", Struct. Eng. Mech., 68(3), 313-323. https://doi.org/10.12989/sem.2018.68.3.313.
  39. Usuki, T. and Yogo, K. (2009), "Beam equations for multi-walled carbon nanotubes derived from Flugge shell theory", Proc. Roy. Soc. A, 465(2104), 1199-1226. https://doi.org/10.1098/rspa.2008.0394.
  40. Wang, J. and Gao, Y. (2016), "Nonlocal orthotropic shell model applied on wave propagation in microtubules", Appl. Math. Model., 40(11-12), 5731-5744. https://doi.org/10.1016/j.apm.2016.01.013.
  41. Wang, V. and Liew, K.M. (2007), "Application of nonlocal continuum mechanics to static analysis of micro-and nanostructures", Phys. Lett. A, 363, 236-242. http://doi.org/10.1016/j.physleta.2006.10.093.
  42. Yayli, M.O . (2015), "Buckling analysis of a rotationally restrained single walled carbon nanotube", Acta Physica Polonica A.
  43. Yayli, M.O . (2016), "Buckling analysis of a microbeam embedded in an elastic medium with deformable boundary conditions", Micro Nano Lett., 11(11), 741-745. https://doi.org/10.1049/mnl.2016.0257.
  44. Yayli, M.O . (2018a), "Torsional vibration analysis of nanorods with elastic torsional restraints using non-local elasticity theory", Micro Nano Lett., 13(5), 595-605. https://doi.org/10.1049/mnl.2017.0751.
  45. Yayli, M.O . (2018b), "Free vibration analysis of a single-walled carbon nanotube embedded in an elastic matrix under rotational restraints", Micro Nano Lett., 13(2), 202-206. https://doi.org/10.1049/mnl.2017.0463.
  46. Yayli, M.O . (2018c), "Free longitudinal vibration of a nanorod with elastic spring boundary conditions made of functionally graded material", Micro Nano Lett., 13(7), 1031-1035. https://doi.org/10.1049/mnl.2018.0181.
  47. Yayli, M.O . (2019a), "Free vibration analysis of a rotationally restrained (FG) nanotube", Microsyst. Technol., 25, 3723-3734. https://doi.org/10.1007/s00542-019-04307-4.
  48. Yayli, M.O . (2019b), "Effects of rotational restraints on the thermal buckling of carbon nanotube", Micro Nano Lett., 14(2), 158-162. https://doi.org/10.1049/mnl.2018.5428.
  49. Yayli, M.O . (2020c), "Axial vibration analysis of a Rayleigh nanorod with deformable boundaries", Microsyst. Technol., 26, 2661-2671. https://doi.org/10.1007/s00542-020-04808-7.
  50. Zhang, J.F., Liu, Q.S., Ge, Y.J. and Zhao, L. (2019), "Studies on the influence factors of wind dynamic responses on hyperbolic cooling tower shells", Struct. Eng. Mech., 72(5), 541. https://doi.org/10.12989/sem.2019.72.5.541.
  51. Zhang, Y.Y., Wang, C.M. and Tan, V.B.C. (2009), "Assessment of Timoshenko beam models for vibrational behavior of single-walled carbon nanotubes using molecular dynamics", Adv. Appl. Math. Mech., 1, 89-106.
  52. Zou, R.D. and Foster, C.G. (1995), "Simple solution for buckling of orthotropic circular cylindrical shells", Thin Wall. Struct., 22(3), 143-158. https://doi.org/10.1016/0263-8231(94)00026-V.