Acknowledgement
This study is supported via funding from Prince Satam bin Abdulaziz University project number (PSAU/2023/R/1444).
References
- Ajayan, P.M., Schadler, L.S., Giannaris, C. and Rubio, A. (2000), "Single-walled carbon nanotube polymer composites: strength and weakness", Adv. Mater., 12, 750-753. https://doi.org/10.1002/(SICI)1521-4095(200005)12:10<750::AID-ADMA750>3.0.CO;2-6.
- Ansari, R. and Rouhi, H. (2013), "Nonlocal analytical Flugge shell model for the vibrations of double-walled carbon nanotubes with different end conditions", Int. J. Appl. Mech., 80, 021006-1. https://doi.org/10.1142/S179329201250018X.
- Azrar, A., Azrar, L. and Aljinaidi, A.A. (2011), "Length scale effect analysis on vibration behavior of single-walled Carbon Nanotubes with arbitrary boundary conditions", Revue de Mecanique Applique et Theorique, 2, 475-484.
- Bahrami, A. and Teimourian, A. (2016), "Study on the effect of small scale on the wave reflection in carbon nanotubes using nonlocal Timoshenko beam theory and wave propagation approach", Compos. Part B: Eng., 91, 492-504. https://doi.org/10.1016/j.compositesb.2016.02.004.
- Duan, W.H., Wang, C.M. and Zhang, Y.Y. (2007), "Calibration of nonlocal scaling effect parameter for free vibration of carbon nanotubes by molecular dynamic", J. Appl. Phys., 101(2), 024305. https://doi.org/10.1063/1.2423140.
- Esmaeili, M. and Tadi Beni, Y. (2019), "Vibration and buckling analysis of functionally graded flexoelectric smart beam", J. Appl. Comput. Mech., 5(5), 900-917. https://doi.org/10.22055/JACM.2019.27857.1439.
- Fereidoon, A., Rafiee, R. and Moghadam, R.M. (2013), "A modal analysis of carbon-nanotube-reinforced polymer by using a multiscale finite-element method", Mech. Compos. Mater., 49(3), 325-332. https://doi.org/10.1007/s11029-013-9350-6.
- Flugge, S. (1973), Stresses in Shells, 2nd Edition, Springer, Berlin.
- Gao, Y. and An, L. (2010), "A nonlocal elastic anisotropic shell model for microtubule buckling behaviors in cytoplasm", Physica E: Low Dimens. Syst. Nanostr., 42(9), 2406-2415. https://doi.org/10.1016/j.bbrc.2009.07.042.
- Gibson, R.F., Ayorinde, E.O. and Wen, Y.F. (2007), "Vibrations of carbon nanotubes and their composites: A review", Compos. Sci. Technol., 67(1), 1-28. https://doi.org/10.1016/j.compscitech.2006.03.031.
- Han, J., Globus, A., Jaffe, R. and Deardorff, G. (1997), "Molecular dynamics simulations of carbon nanotube-based gears", Nanotechnol., 8(3), 95. https://doi.org/10.1088/0957-4484/8/3/001.
- Heydarpour, Y., Aghdam, M.M. and Malekzadeh, P. (2014), "Free vibration analysis of rotating functionally graded carbon nanotube-reinforced composite truncated conical shells", Compos. Struct., 117, 187-200. http://doi.org/10.1016/j.compstruct.2014.06.023.
- Hussain, M. and Naeem, M.N. (2018), "Vibration of single-walled carbon nanotubes based on Donnell shell theory using wave propagation approach", Novel Nanomater.-Synthes. Appl., 78-90. http://doi.org/10.5772/intechopen.73503.
- Hussain, M., Naeem, M.N., Shahzad, A. and He, M. (2017), "Vibrational behavior of single-walled carbon nanotubes based on cylindrical shell model using wave propagation approach", AIP Adv., 7(4), 045114. https://doi.org/10.1063/1.4979112.
- Jorio, A., Saito, R., Hafner, J.H., Lieber, C.M., Hunter, D.M., McClure, T., ... & Dresselhaus, M.S. (2001), "Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering", Phys. Rev. Lett., 86(6), 1118. https://doi.org/10.1103/PhysRevLett.86.1118.
- Kar, V.R., Panda, S.K. and Pandey, H.K. (2018), "Numerical study of temperature dependent eigenfrequency responses of tilted functionally graded shallow shell structures", Struct. Eng. Mech., 68(5), 527-536. https://doi.org/10.12989/sem.2018.68.5.527.
- Kocal, T. and Akbarov, S.D. (2019), "The influence of the rheological parameters on the dispersion of the flexural waves in a viscoelastic bi-layered hollow cylinder", Struct. Eng. Mech., 71(5), 577-601. https://doi.org/10.12989/sem.2019.71.5.577.
- Koochi, A. and Goharimanesh, M. (2021), "Nonlinear oscillations of CNT nano-resonator based on nonlocal elasticity: The energy balance method", Report. Mech. Eng., 2(1), 41-50. https://doi.org/10.31181/rme200102041g
- Kotakoski, J., Krasheninnikov, A.V. and Nordlund, K. (2006), "Energetics, structure, and long-range interaction of vacancy-type defects in carbon nanotubes: Atomistic simulations", Phys. Rev. B, 74, 245420/1-5. https://doi.org/10.12989/scs.2018.28.1.099.
- Kulathunga, D.D.T.K., Ang, K.K. and Reddy, J.N. (2009), "Accurate modeling of buckling of single-and double-walled carbon nanotubes based on shell theories", J. Phys.: Condens. Mat., 21(43), 435301. https://doi.org/10.1088/0953-8984/21/43/435301.
- Loy, C.T., Lam, K.Y. and Reddy, J.N. (1999), "Vibration of functionally graded cylindrical shells", Int. J. Mech. Sci., 41, 309-324. https://doi.org/10.1016/S0020-7403(98)00054-X.
- Moghadam, R.M., Hosseini, S.A. and Salehi, M. (2014), "The influence of Stone-Thrower-Wales defect on vibrational characteristics of single-walled carbon nanotubes incorporating Timoshenko beam element", Physica E: Low Dimens. Syst. Nanostr., 62, 80-89. https://doi.org/10.1016/j.physe.2014.04.008.
- Ouakad, H.M., Valipour, A., Zur, K.K., Sedighi, H.M. and Reddy, J.N. (2020), "On the nonlinear vibration and static deflection problems of actuated hybrid nanotubes based on the stress-driven nonlocal integral elasticity", Mech. Mater., 148, 103532. https://doi.org/10.1016/j.mechmat.2020.103532.
- Paliwal, D.N., Kanagasabapathy, H. and Gupta, K.M. (1995), "The large deflection of an orthotropic cylindrical shell on a Pasternak foundation", Compos. Struct., 31(1), 31-37. https://doi.org/10.1016/0263-8223(94)00068-9.
- Pandey, P. and Dahiya, M. (2016), "Carbon nanotubes: Types, methods of preparation and applications", Carbon, 1, 4. https://doi.org/10.5772/intechopen.92995.
- Rafiee, R. and Moghadam, R.M. (2012), "Simulation of impact and post-impact behavior of carbon nanotube reinforced polymer using multi-scale finite element modeling", Comput. Mater. Sci., 63, 261-268. https://doi.org/10.1016/j.commatsci.2012.06.010.
- Rakrak, K., Zidour, M., Heireche, H., Bousahla, A.A. and Chemi, A. (2016), "Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory", Adv. Nano Res., 4(1), 31-44. http://doi.org/10.12989/anr.2016.4.1.031.
- Rastogi, V., Yadav, P., Bhattacharya, S.S., Mishra, A.K., Verma, N., Verma, A. and Pandit, J.K. (2014), "Carbon nanotubes: an emerging drug carrier for targeting cancer cells", J. Drug Delivery, 1, 66-69. https://doi.org/10.1155/2014/670815.
- Rouhi, H., Ansari, R. and Arash, B. (2013), "Vibration analysis of double-walled carbon nanotubes based on the non-local donnell shell via a new numerical approach", Trans. Mech. Eng., 37(M2), 91-105.
- Rysaeva, L.K., Bachurin, D.V., Murzaev, R.T., Abdullina, D.U., Korznikova, E.A., Mulyukov, R.R. and Dmitriev, S.V. (2020), "Evolution of the carbon nanotube bundle structure under biaxial and shear strains", Facta Universitatis, Ser.: Mech. Eng., 18(4), 525-536. http://doi.org/10.22190/FUME201005043R.
- Sadoughifar, A., Farhatnia, F., Izadinia, M. and Talaeetaba, S.B. (2020), "Size-dependent buckling behaviour of FG annular/circular thick nanoplates with porosities resting on Kerr foundation based on new hyperbolic shear deformation theory", Struct. Eng. Mech., 73(3), 225. https://doi.org/10.12989/sem.2020.73.3.225.
- Saito, N., Haniu, H., Usui, Y., Aoki, K., Hara, K., Takanashi, S., ... & Endo, M. (2014), "Safe clinical use of carbon nanotubes as innovative biomaterials", Chem. Rev., 114, 6040-6079. https://doi.org/10.1021/cr400341h.
- Sedighi, H.M. and Daneshmand, F. (2014), "Static and dynamic pull-in instability of multi-walled carbon nanotube probes by He's iteration perturbation method", J. Mech. Sci. Technol., 28, 3459-3469. https://doi.org/10.1007/s12206-014-0807-x.
- Selim, M.M. (2010), "Torsional vibration of carbon nanotubes under initial compression stress", Brazil. J. Phys., 40(3), 283-287. http://doi.org/10.1590/S0103-97332010000300004.
- Semmah, A., Heireche, H., Bousahla, A.A. and Toumsi, A. (2019), "Thermal buckling analysis of SWBNNT on Winkler foundation by nonlocal FSDT", Adv. Nano Res., 7(2), 89-98. https://doi.org/10.12989/anr.2019.7.2.089.
- Shamshirsaz, M., Sharafi, S., Rahmatian, J., Rahmatian, S. and Sepehry, N. (2020), "A semi-analytical mesh-free method for 3D free vibration analysis of bi-directional FGP circular structures subjected to temperature variation", Struct. Eng. Mech., 73(4), 407. https://doi.org/10.12989/sem.2020.73.4.407.
- Swaddiwudhipong, S., Tian, J. and Wang, CM. (1995), "Vibration of cylindrical shells with ring supports", J. Sound Vib., 187, 69-93. https://doi.org/10.1016/S0020-7403(96)00035-5.
- Torabi, J. and Ansari, R. (2018), "Thermally induced mechanical analysis of temperature-dependent FG-CNTRC conical shells", Struct. Eng. Mech., 68(3), 313-323. https://doi.org/10.12989/sem.2018.68.3.313.
- Usuki, T. and Yogo, K. (2009), "Beam equations for multi-walled carbon nanotubes derived from Flugge shell theory", Proc. Roy. Soc. A, 465(2104), 1199-1226. https://doi.org/10.1098/rspa.2008.0394.
- Wang, J. and Gao, Y. (2016), "Nonlocal orthotropic shell model applied on wave propagation in microtubules", Appl. Math. Model., 40(11-12), 5731-5744. https://doi.org/10.1016/j.apm.2016.01.013.
- Wang, V. and Liew, K.M. (2007), "Application of nonlocal continuum mechanics to static analysis of micro-and nanostructures", Phys. Lett. A, 363, 236-242. http://doi.org/10.1016/j.physleta.2006.10.093.
- Yayli, M.O . (2015), "Buckling analysis of a rotationally restrained single walled carbon nanotube", Acta Physica Polonica A.
- Yayli, M.O . (2016), "Buckling analysis of a microbeam embedded in an elastic medium with deformable boundary conditions", Micro Nano Lett., 11(11), 741-745. https://doi.org/10.1049/mnl.2016.0257.
- Yayli, M.O . (2018a), "Torsional vibration analysis of nanorods with elastic torsional restraints using non-local elasticity theory", Micro Nano Lett., 13(5), 595-605. https://doi.org/10.1049/mnl.2017.0751.
- Yayli, M.O . (2018b), "Free vibration analysis of a single-walled carbon nanotube embedded in an elastic matrix under rotational restraints", Micro Nano Lett., 13(2), 202-206. https://doi.org/10.1049/mnl.2017.0463.
- Yayli, M.O . (2018c), "Free longitudinal vibration of a nanorod with elastic spring boundary conditions made of functionally graded material", Micro Nano Lett., 13(7), 1031-1035. https://doi.org/10.1049/mnl.2018.0181.
- Yayli, M.O . (2019a), "Free vibration analysis of a rotationally restrained (FG) nanotube", Microsyst. Technol., 25, 3723-3734. https://doi.org/10.1007/s00542-019-04307-4.
- Yayli, M.O . (2019b), "Effects of rotational restraints on the thermal buckling of carbon nanotube", Micro Nano Lett., 14(2), 158-162. https://doi.org/10.1049/mnl.2018.5428.
- Yayli, M.O . (2020c), "Axial vibration analysis of a Rayleigh nanorod with deformable boundaries", Microsyst. Technol., 26, 2661-2671. https://doi.org/10.1007/s00542-020-04808-7.
- Zhang, J.F., Liu, Q.S., Ge, Y.J. and Zhao, L. (2019), "Studies on the influence factors of wind dynamic responses on hyperbolic cooling tower shells", Struct. Eng. Mech., 72(5), 541. https://doi.org/10.12989/sem.2019.72.5.541.
- Zhang, Y.Y., Wang, C.M. and Tan, V.B.C. (2009), "Assessment of Timoshenko beam models for vibrational behavior of single-walled carbon nanotubes using molecular dynamics", Adv. Appl. Math. Mech., 1, 89-106.
- Zou, R.D. and Foster, C.G. (1995), "Simple solution for buckling of orthotropic circular cylindrical shells", Thin Wall. Struct., 22(3), 143-158. https://doi.org/10.1016/0263-8231(94)00026-V.