DOI QR코드

DOI QR Code

Axial compressive behavior of high strength concrete-filled circular thin-walled steel tube columns with reinforcements

  • Meng Chen (School of Resources and Civil Engineering, Northeastern University) ;
  • Yuxin Cao (School of Resources and Civil Engineering, Northeastern University) ;
  • Ye Yao (School of Resources and Civil Engineering, Northeastern University)
  • Received : 2023.06.05
  • Accepted : 2023.09.04
  • Published : 2023.10.10

Abstract

In this study, circular thin-walled reinforced high strength concrete-filled steel tube (RHSCFST) stub columns with various tube thicknesses (i.e., 1.8, 2.5 and 3.0mm) and reinforcement ratios (i.e., 0, 1.6%, 2.4% and 3.2%) were fabricated to explore the influence of these factors on the axial compressive behavior of RHSCFST. The obtained test results show that the failure mode of RHSCFST transforms from outward buckling and tearing failure to drum failure with the increasing tube thickness. With the tube thickness and reinforcement ratio increased, the ultimate load-carrying capacity, compressive stiffness and ductility of columns increased, while the lateral strain in the stirrup decreased. Comparisons were also made between test results and the existing codes such as AIJ (2008), BS5400 (2005), ACI (2019) and EC4 (2010). It has been found that the existing codes provide conservative predictions for the ultimate load-carrying capacity of RHSCFST. Therefore, an accurate model for the prediction of the ultimate load-carrying capacity of circular thin-walled RHSCFST considering the steel reinforcement is developed, based on the obtained experimental results. It has been found that the model proposed in this study provides more accurate predictions of the ultimate load-carrying capacity than that from existing design codes.

Keywords

Acknowledgement

This work is financially funded by the Fundamental Research Funds for the Central Universities (No. N2201023 and No. N2301016). The financial support is highly appreciated.

References

  1. AIJ (2008), Recommendations for Design and Construction of Concrete Filled Steel Tubular Structures, Archit. Inst. Japan, Tokyo, Japan.
  2. BS5400 (2005), Steel, Concrete and Composite Bridges-Part 5: Code of Practice for the Design of Composite Bridges, UK British Stand. Institution, London, UK.
  3. Cai, Y.C., Quach, W.M. and Young, B. (2019), "Experimental and numerical investigation of concrete-filled hot-finished and cold-formed steel elliptical tubular stub columns", Thin Wall. Struct., 145, 106437. https://doi.org/10.1016/j.tws.2019.106437.
  4. Cement, C.P. (2007), Chinese Standard: GB175-2007, Stand. Adm, Beijing, China.
  5. Chen, Z.P., Zhou, J., Jing, C.G. and Tan, Q.H. (2021), "Mechanical behavior of spiral stirrup reinforced concrete filled square steel tubular columns under compression", Eng. Struct., 226, 111377. https://doi.org/10.1016/j.engstruct.2020.111377.
  6. Cheng, L. (2017), "Axial load behavior and strength of tube-confined steel-reinforced short columns with ultra-high-strength concrete", Thin Wall. Struct., 49, 1141-1150. https://doi.org/10.1177/1369433217719983.
  7. Chitawadagi, M.V. and Narasimhan, M.C. (2009), "Strength deformation behaviour of circular concrete filled steel tubes subjected to pure bending", J. Constr. Steel Res., 65(8), 1836-1845. https://doi.org/10.1016/j.jcsr.2009.04.006.
  8. Dong, C.X., Kwan, A.K.H. and Ho, J.C.M. (2015), "A constitutive model for predicting the lateral strain of confined concrete", Eng. Struct., 91, 155-166. https://doi.org/10.1016/j.engstruct.2015.02.014.
  9. Dong, C.X., Kwan, A.K.H. and Ho, J.C.M. (2017), "Effects of external confinement on structural performance of concrete-filled steel tubes", J. Constr. Steel Res., 132, 72-82. https://doi.org/10.1016/j.jcsr.2016.12.024
  10. Ding, F. and Yu, Z. (2018), "Mechanical behavior of stirrup-confined rectangular CFT stub columns under axial compression", Thin Wall. Struct., 124, 136-150. https://doi.org/10.1016/j.tws.2017.12.007.
  11. Ding, F. and Liu, X. (2018), "Comparative study of stirrup-confined circular concrete-filled steel tubular stub columns under axial loading", Thin Wall. Struct., 123, 294-304. https://doi.org/10.1016/j.tws.2017.11.033.
  12. Ellobody, E. and Lam, D. (2006), "Behaviour of normal and high strength concrete-filled compact steel tube circular stub columns", J. Constr. Steel Res., 62(7), 706-715. https://doi.org/10.1016/j.jcsr.2005.11.002.
  13. Elremaily, A. and Azizinamini, A. (2002), "Behavior and strength of circular concrete-filled tube columns", J. Constr. Steel Res., 58(12), 1567-1591. https://doi.org/10.1016/S0143-974X(02)00005-6.
  14. Xiaodan, F., Biao, J., Hong, W., Yuezhou, Z.H.O.U., Yi, J.I.A.N.G. and Hongtao, L.A.I. (2013), "Axial compressive test and study on steel tube confined high strength concrete shear wall", J. Build. Struct., 34, 100-109. https://doi.org/10.2139/ssrn.2111064.
  15. Farajpourbonab, E. and Inamdar, V.M. (2018), "Steel-reinforced concrete-filled steel tubular columns under axial and lateral cyclic loading", Int. J. Adv. Struct. Eng., 10(1), 61-72. https://doi.org/10.1007/s40091-018-0186-0.
  16. Ge, H. and Usami, T. (1992), "Strength of concrete-filled thin-walled steel box columns: experiment", J. Struct. Eng., 118(11), 3036-3054. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:11(3036).
  17. Giakoumelis, G. and Lam, D. (2004), "Axial capacity of circular concrete-filled tube columns", J. Constr. Steel Res., 60(7), 1049-1068. https://doi.org/10.1016/j.jcsr.2003.10.001.
  18. Hicks, S. (2010), Eurocode 4: Design of Composite Steel and Concrete Structures, BSI, London, UK.
  19. Ho, J.C.M., Ou, X.L., Chen, M.T., Wang, Q. and Lai M.H. (2020), "A path dependent constitutive model for CFFT column", Eng. Struct., 210, 110367. https://doi.org/10.1016/j.engstruct.2020.110367.
  20. Krishan, A.L. and Astafyeva, M.A. (2017), "Strength of short concrete filled steel tube columns with Spiral Reinforcement", IOP Conf. Ser. Mater. Sci. Eng., 262, 012048. https://doi.org/10.1088/1757-899X/262/1/012048.
  21. Kwan, A.K.H., Dong, C.X. and Ho, J.C.M. (2015), "Axial and lateral stress-strain model for FRP confined concrete", Eng. Struct., 99, 285-295. https://doi.org/10.1016/j.engstruct.2015.04.046.
  22. Kwan, A.K.H., Dong, C.X. and Ho, J.C.M. (2016), "Axial and lateral stress-strain model for concrete-filled steel tubes", J. Constr. Steel Res., 122, 421-433. https://doi.org/10.1016/j.jcsr.2016.03.031.
  23. Kwan, A.K.H. and Wong, H.H.C. (2008), "Packing density of cementitious materials: Part 2-Packing and flow of OPC + PFA + CSF", Mater. Struct., 41(4), 773-784. https://doi.org/10.1617/s11527-007-9281-6.
  24. Lai, M.H., Liang, Y.W., Wang, Q., Ren, F.M., Chen, M.T. and Ho, J.C.M. (2020), "A stress-path dependent stress-strain model for FRP-confined concrete", Eng. Struct., 203, 109824. https://doi.org/10.1016/j.engstruct.2019.109824.
  25. Lai, M.H., Song, W., Ou, X.L., Chen, M.T., Wang, Q. and Ho, J.C.M. (2020), "A path dependent stress-strain model for concrete-filled-steel-tube column", Eng. Struct., 211, 110312. https://doi.org/10.1016/j.engstruct.2020.110312.
  26. Lai, M., Hanzic, L. and Ho, J.C.M. (2019), "Fillers to improve passing ability of concrete", Struct. Concrete, 20(1), 185-197. https://doi.org/10.1002/suco.201800047.
  27. Lai, M.H. and Ho, J.C.M. (2015), "Axial strengthening of thin-walled concrete-filled-steel-tube columns by circular steel jackets", Thin Wall. Struct., 97, 11-21. https://doi.org/10.1016/j.tws.2015.09.002.
  28. Le, K.B. and Cao, H.X. (2021), "Circular concrete filled thin-walled steel tubes under pure torsion: Experiments", Thin Wall. Struct., 164, 107874. https://doi.org/10.1016/j.tws.2021.107874.
  29. Liu, H. and Waisman, H. (2015), "Strength and ductility performance of concrete-filled steel tubular columns after long-term service loading", Eng. Struct., 100, 308-325. https://doi.org/10.1016/j.engstruct.2015.06.024.
  30. Liu, Z. and Lu, Y. (2022), "Mechanical behavior of steel-fiber-reinforced self-stressing concrete filled steel tube columns subjected to eccentric loading", Struct., 45, 932-950. https://doi.org/10.1016/j.istruc.2022.08.118.
  31. Ma, Y.S. and Wang, Y.F. (2012), "Creep of high strength concrete filled steel tube columns", Thin Wall. Struct., 53, 91-98. https://doi.org/10.1016/j.tws.2011.12.012.
  32. McAteer, P. and Lachemi, M. (2004), "Composite response of high-strength concrete confined by circular steel tube", ACI Struct. J., 101, 466-474. https://doi.org/10.14359/13332.
  33. Nghiem, A. and Lee, C.H. (2018), "Flexural testing of circular concrete-filled tubes without axial forces", ACI Struct. J., 115(2). 511-524D. https://doi.org/10.14359/51701134.
  34. O'Shea, M.D. and Bridge, R.Q. (2000), "Design of circular thin-walled concrete filled steel tubes", J. Struct. Eng., 126(11), 1295-1303. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:11(1295).
  35. Qi, H. and Zhang, S. (2011), "Axial load behavior and strength of tubed steel reinforced-concrete (SRC) stub columns", Thin Wall. Struct., 49(9), 1141-1150. https://doi.org/10.1016/j.tws.2011.04.006.
  36. Ren, Q.X. and Han, L.H. (2018), "Dune sand concrete-filled steel tubular (CFST) stub columns under axial compression: Experiments", Thin Wall. Struct., 124, 291-302. https://doi.org/10.1016/j.tws.2017.12.006.
  37. Roeder, C.W. and Bishop, E. (2010), "Strength and stiffness of circular concrete-filled tubes", J. Struct. Eng., 136(12), 1545-1553. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000263.
  38. Santana, G. and Committee, A.C.I. (2019), Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary, ACI Committee, Farmington Hills, Michigan, USA.
  39. ST, Z. (2006), Unified Theory of Concrete Filled Steel Tube: Research and Application, Tsinghua University Press, Beijing, China.
  40. Tomii, M., Sakino, K., Xiao, Y. and Watanabe, K. (1985), "Earthquake resisting hysteretic behavior of reinforced concrete short columns confined by steel tube", Proceedings of the international speciality conference on concrete filled steel tubular structures, Harbin, China, August.
  41. Wang, J. and Sun, Q. (2018), "Cyclic testing of Q690 circular high-strength concrete-filled thin-walled steel tubular columns", Adv. Struct. Eng., 22, 136943321879076. https://doi.org/10.1177/1369433218790769.
  42. Wang, W.D. and Tan, E.L. (2020), "Performance of steel-reinforced circular concrete-filled steel tubular members under combined compression and torsion", J. Constr. Steel Res., 173, 106271. https://doi.org/10.1016/j.jcsr.2020.106271.
  43. Wang Z. (2016), "Experimental research on mechanical property of hoop concrete-filled thin-walled steel tubular column under axial load", Ph.D. Dissertation, Harbin Institute of Technology, Harbin.
  44. Wong, H. and Kwan, A. (2008), "Packing density of cementitious materials: Part 1-Measurement using a wet packing method", Mater. Struct., 41, 689-701. https://doi.org/10.1617/s11527-007-9274-5.
  45. Wu, B. and Chen, G.M. (2018), "Compressive behavior of thin-walled circular steel tubular columns filled with steel stirrup-reinforced compound concrete", Eng. Struct., 170, 178-195. https://doi.org/10.1016/j.engstruct.2018.05.028.
  46. Xiamuxi, A. and Hasegawa, A. (2012), "A study on axial compressive behaviors of reinforced concrete filled tubular steel columns", J. Constr. Steel Res., 76, 144-154. https://doi.org/10.1016/j.jcsr.2012.03.023.
  47. Xiamuxi, A. and Hasegawa, A. (2020), "Study of the concrete in reinforced concrete-filled steel tube column under axial loading", J. Constr. Steel Res., 170, 106111. https://doi.org/10.1016/j.jcsr.2020.106111.
  48. Xiao, Y. and Choi, K. (2005), "Confined concrete-filled tubular columns", J. Struct. Eng., 131(3), 488-497. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:3(488).
  49. Xiao, Y. and Sakino, K. (1986), "Experimental study on the design method to prevent the shear failure of reinforced concrete short circular columns by confining in steel tube", Trans. Japan Concr. Inst., Tokyo, Japan, July.
  50. Xiong, M.X. and Liew, J.Y.R. (2017), "Flexural performance of concrete filled tubes with high tensile steel and ultra-high strength concrete", J. Constr. Steel Res., 132, 191-202. https://doi.org/10.1016/j.jcsr.2017.01.017.
  51. Yan, B. and Zhou, X. (2017), "Axial load behavior and stability strength of circular tubed steel reinforced concrete (SRC) columns", Steel Compos. Struct., 25, 545-556. https://doi.org/10.12989/scs.2017.25.5.545.
  52. Yan, X.F. and Zhao, Y.G. (2020), "Compressive strength of axially loaded circular concrete-filled double-skin steel tubular short columns", J. Constr. Steel Res., 170, 106114. https://doi.org/10.1016/j.jcsr.2020.106114.
  53. Yang, L. and Gravina, R.J. (2018), "Evaluation of dynamic increase factor models for steel fibre reinforced concrete", Constr. Build. Mater., 190, 632-644. https://doi.org/10.1016/j.conbuildmat.2018.09.085.
  54. Yuan, F. and Wang, C. (2018), "Circular concrete filled steel tubular (CFST) columns under cyclic load and acid rain attack: Test simulation", Thin Wall. Struct., 122, 90-101. https://doi.org/10.1016/j.tws.2017.10.005.
  55. Zhang, S. and Wang, Y. (2005), "Behavior of steel tube and confined high strength concrete for concrete-filled RHS tubes", Adv. Struct. Eng., 8(2), 101-116. https://doi.org/10.1260/1369433054037976.