DOI QR코드

DOI QR Code

Rapid assessment of suspension bridge deformation under concentrated live load considering main beam stiffness: An analytical method

  • Wen-ming Zhang (The Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University) ;
  • Jia-qi Chang (The Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University) ;
  • Xing-hang Shen (The Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University) ;
  • Xiao-fan Lu (The Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University) ;
  • Tian-cheng Liu (CCCC Highway Bridges National Engineering Research Centre CO., Ltd.)
  • 투고 : 2023.04.28
  • 심사 : 2023.09.01
  • 발행 : 2023.10.10

초록

With the gradual implementation of long-span suspension bridges into high-speed railway operations, the main beam's bending stiffness contribution to the live load response permanently grows. Since another critical control parameter of railway suspension bridges is the beam-end rotation angle, it should not be ignored by treating the main beam deflection as the only deformation response. To this end, the current study refines the existing method of the main cable shape and simply supported beam bending moment analogy. The bending stiffness of the main beam is considered, and the main beam's analytical expressions of deflection and rotation angle in the whole span are obtained using the cable-beam deformation coordination relationship. Taking a railway suspension bridge as an example, the effectiveness and accuracy of the proposed analytical method are verified by the finite element method (FEM). Comparison of the results by FEM and the analytical method ignoring the main beam stiffness revealed that the bending stiffness of the main beam strongly contributed to the live load response. Under the same live load, as the main beam stiffness increases, the overall deformation of the structure decreases, and the reduction is particularly noticeable at locations with original larger deformations. When the main beam stiffness is increased to a certain extent, the stiffening effect is no longer pronounced.

키워드

과제정보

The work described in this paper was financially supported by the National Key R&D Program of China (Grant No. 2022YFB3706703), the National Natural Science Foundation of China (Grant Nos. 52078134 and 52378138), and the Research and Development Project of China Communications Construction under Grant No. YSZX-02-2021-01-B, which are gratefully acknowledged.

참고문헌

  1. Arco, D.C. and Aparicio, A.C. (2001), "Preliminary static analysis of suspension bridges", Eng. Struct., 23(9), 1096-1103. https://doi.org/10.1016/S0141-0296(01)00009-8. 
  2. Buonopane, S.G. and Billington, D.P. (1993), "Theory and history of suspension bridge design from 1823 to 1940", J. Struct. Eng., 119(3), 954-977. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:3(954). 
  3. Cao, H.Y., Chen, Y.P., Li, J. and Liu, S. (2021), "Static characteristics analysis of three-tower suspension bridges with central buckle using a simplified model", Eng. Struct., 245, 112916. https://doi.org/10.1016/j.engstruct.2021.112916. 
  4. Choi, D.H., Gwon, S.G., Yoo, H. and Na, H.S. (2013), "Nonlinear static analysis of continuous multi-span suspension bridges", Int. J. Steel Struct., 13(1), 103-115. https://doi.org/10.1007/s13296-013-1010-0. 
  5. Clemente, P., Nicolosi, G. and Raithel, A. (2000), "Preliminary design of very long-span suspension bridges", Eng. Struct., 22(12), 1699-1706. https://doi.org/10.1016/S0141-0296(99)00112-1. 
  6. Gimsing, N.J. and Georgakis, C.T. (2012), Cable Supported Bridges: Concept and Design, John Wiley & Sons, UK.
  7. Grigorjeva, T., Juozapaitis, A. and Karnaitis, Z. (2006), "Simplified engineering method of suspension bridges with rigid cables under action of symmetrical and asymmetrical loads", Balt. J. Road Bridge Eng., 1(1), 11-20. 
  8. Gwon, S.G. and Choi, D.H. (2018), "Continuum model for static and dynamic analysis of suspension bridges with a floating girder", J. Bridge Eng., 23(10), 04018079. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001282. 
  9. He, X.H., Wu, T., Zou, Y.F., Chen, Y.F., Guo, H. and Yu, Z.W. (2017), "Recent developments of high-speed railway bridges in China", Struct. Infrastr. Eng., 13(12), 1584-1595. https://doi.org/10.1080/15732479.2017.1304429. 
  10. Hu, N., Dai, G.L., Yan, B. and Liu, K. (2014), "Recent development of design and construction of medium and long span high-speed railway bridges in China", Eng. Struct., 74, 233-241. https://doi.org/10.1016/j.engstruct.2014.05.052. 
  11. Jennings, A. (1983), "Gravity stiffness of classical suspension bridges", J. Struct. Eng., 109(1), 16-36. https://doi.org/10.1061/(ASCE)0733-9445(1983)109:1(16). 
  12. Jung, M.R., Shin, S.U., Attard, M.M. and Kim, M.Y. (2015), "Deflection theory for self-anchored suspension bridges under live load", J. Bridge Eng., 20(7), 04014093. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000687. 
  13. Konstantakopoulos, T.G. and Michaltsos, G.T. (2010), "A mathematical model for a combined cable system of bridges", Eng. Struct., 32(9), 2717-2728. https://doi.org/10.1016/j.engstruct.2010.04.042. 
  14. Li, W.J., Gong, J.X. and Zhang, X.G. (2021), "Study on live load reduction factors of train for long span multitrack railway suspension bridges", Struct., 32, 1180-1191. https://doi.org/10.1016/j.istruc.2021.03.089. 
  15. Liu, Z. and Liu, H.J. (2009), "New arithmetic for cable deflection and gravity stiffness of suspension bridges", Eng. Mech., 26(6), 127-132. (in Chinese) 
  16. Ochsendorf, J.A. and Billington, D.P. (1999), "Self-anchored suspension bridges", J. Bridge Eng., 4(3), 151-156. https://doi.org/10.1061/(ASCE)1084-0702(1999)4:3(151). 
  17. Ohshima, H., Sato, K. and Watanabe, N. (1984), "Structural analysis of suspension bridges", J. Eng. Mech., 110(3), 392-404. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:3(392). 
  18. Qin, S.Q. and Gao, Z.Y. (2017), "Developments and prospects of long-span high-speed railway bridge technologies in China", Eng., 3(6), 787-794. https://doi.org/10.1016/j.eng.2017.11.001. 
  19. Stavridis, L.T. (2008), "A simplified analysis of the behavior of suspension bridges under live load", Struct. Eng. Mech., 30(5), 559-576. https://doi.org/10.12989/sem.2008.30.5.559. 
  20. Steinman, D.B. (1929), A Practical Treatise on Suspension Bridges, John Wiley & Sons, New York. 
  21. Sun, Y., Zhang, M., Wang, X.M., Zhao, J.L. and Bai, Y.T. (2022), "Analytical investigation of the main cable bending stiffness effect on free flexural vibration of suspension bridges with a 3D cable system", Struct., 41, 764-776. https://doi.org/10.1016/j.istruc.2022.05.010. 
  22. Ulstrup, C.C. (1993), "Rating and preliminary analysis of suspension bridges", J. Struct. Eng., 119(9), 2653-2679. https://doi.org/10.1061/(ASCE)0733-9445(1993)119:9(2653). 
  23. Wang, X.M., Zhao, J.L., Sun, Y., Wang, F. and Li, Z.H. (2023), "Multifrequency-based tension intelligent identification for cables with unknown end-restraints using a metaheuristic algorithm", Struct., 50, 775-790. https://doi.org/10.1016/j.istruc.2023.02.049. 
  24. Wollmann, G.P. (2001), "Preliminary analysis of suspension bridges", J. Bridge Eng., 6(4), 227-233. https://doi.org/10.1061/(ASCE)1084-0702(2001)6:4(227). 
  25. Wu, F.Y., Feng, C.L. and Xia, Y. (2022), "Wufengshan Yangtze River Bridge: A thousand-meter scale suspension bridge in China", Struct. Eng. Int., 32(2), 247-251. https://doi.org/10.1080/10168664.2021.1975347. 
  26. Yan, B., Zhang, G.X., Han, Z.S. and Lou, P. (2019), "Longitudinal force of continuously welded rail on suspension bridge with length exceeding 1000 m", Struct. Eng. Int., 29(3), 390-395. https://doi.org/10.1080/10168664.2019.1577115. 
  27. Zhang, W.M., Yang, C.Y., Chang, J.Q., Li, D.M. and Liu, Z. (2021), "Gravity stiffness of a three-tower suspension bridge: Analytical solution via double-span bridge reduction to a single-span one with elastic constraints", Struct., 33, 2198-2207. https://doi.org/10.1016/j.istruc.2021.05.083.