DOI QR코드

DOI QR Code

Analysis and design of eccentrically loaded lightweight aggregate concrete-encased steel slender columns

  • Mostafa M.A. Mostafa (Civil Engineering Department, Faculty of Engineering, Al-Azhar University)
  • Received : 2022.03.05
  • Accepted : 2023.08.28
  • Published : 2023.10.10

Abstract

This paper presents a finite element (FE) simulation of eccentrically loaded lightweight aggregate concrete-encased steel (LACES) columns with H-shaped steel sections, analytical equations are also established to estimate the columns' axial and bending moment interaction capacities. The validity of the proposed models is checked by comparing the results with experimental data. Good agreements between the test and proposed models' results are found with acceptable agreements. Moreover, design parameters, including the lightweight aggregate concrete (LWAC) strength, eccentricity, column slenderness ratio, and confinement, are studied using the FE analysis, and their efficiency factors are discussed. The results show that the ultimate axial capacity of the LACES composite columns subjected to eccentric loading is negatively affected by the increase in the columns' height, but it is positively affected by the increase of the confinement. Increasing the eccentricity and columns' height reduced the columns'stiffness. In addition, the ultimate capacity of the LACES column is significantly influenced by the LWAC strength and eccentricity, where the ultimate capacity of the LACES column is significantly increased by increasing LWAC strength, and it is remarkably decreased by increasing the eccentricity. When the eccentricity changed from zero to 70 mm, the ultimate axial capacity and stiffness decreased by 67.97% and 63.56%, respectively.

Keywords

References

  1. Abd Elrahman, M., El Madawy, M.E., Chung, S.Y., Sikora, P. and Stephan, D. (2019), "Preparation and characterization of ultra-lightweight foamed concrete incorporating lightweight aggregates", Appl. Sci., 9(7), 1447. https://doi.org/10.3390/app9071447.
  2. ACI318R-19 (2019), Building Code Requirements for Structural Concrete and Commentary, ACI Committee.
  3. Al-Shahari, A.M., Hunaiti, Y.M. and Ghazaleh, B.A. (2003), "Behavior of lightweight aggregate concrete-encased composite columns", Steel Compos. Struct., 3(2), 97-110. http://doi.org/10.12989/scs.2003.3.2.097.
  4. Begum, M., Driver, R.G. and Elwi, A.E. (2013), "Behaviour of partially encased composite columns with high strength concrete", Eng. Struct., 56, 1718-1727. http://doi.org/10.1016/j.engstruct.2013.07.040.
  5. Bjerkeli, L., Tomaszewicz, A. and Jensen, J. (1990), "Deformation properties and ductility of high-strength concrete", ACI Mater. J., 121, 215-238.
  6. Bogas, J.A. and Gomes, A. (2013), "Compressive behavior and failure modes of structural lightweight aggregate concrete-Characterization and strength prediction", Mater Des., 46, 832-841. http://doi.org/10.1016/j.matdes.2012.11.004.
  7. Chandra, S. and Berntsson, L. (2002a), 8-Durability of Lightweight Aggregate Concrete to Chemical Attack, William Andrew Publishing, Norwich, NY.
  8. Chandra, S. and Berntsson, L. (2002b), 9-Fire Resistance of Lightweight Aggregate Concrete, William Andrew Publishing, Norwich, NY.
  9. Chandra, S. and Berntsson, L. (2002c), 10-Freeze-Thaw Resistance of Lightweight Aggregate Concrete, William Andrew Publishing, Norwich, NY.
  10. Charalampakis, A.E. and Koumousis, V. (2008), "Ultimate strength analysis of composite sections under biaxial bending and axial load", Adv. Eng. Softw., 39(11), 923-936. https://doi.org/10.1016/j.advengsoft.2008.01.007.
  11. Chen, H.J., Huang, C.H. and Kao, Z.Y. (2004), "Experimental investigation on steel-concrete bond in lightweight and normal weight concrete", Struct. Eng. Mech., 17(2), 141-152. https://doi.org/10.12989/sem.2004.17.2.141.
  12. Chen, S., Teng, J. and Chan, S.L. (2001), "Design of biaxially loaded short composite columns of arbitrary section", J. Struct. Eng., 127(6), 678-685. https://doi.org/10.1061/(ASCE)0733-9445(2001)127:6(678).
  13. Chin, Y.S. (2009), "Stress-strain behavior of highly confined concrete in SRC Stub columns", Master Thesis, National Taiwan University of Science and Technology, Taipei, Taiwan. (in Chinese)
  14. Davison, B. and Owens, G.W. (2011), Steel Designers' Manual, John Wiley & Sons, Blackwell Science.
  15. Dundar, C., Tokgoz, S., Tanrikulu, A.K. and Baran, T. (2008), "Behaviour of reinforced and concrete-encased composite columns subjected to biaxial bending and axial load", Build. Environ., 43(6), 1109-1120. https://doi.org/10.1016/j.buildenv.2007.02.010.
  16. Ellobody, E., Alfazari, S., Alghafri, W. and Aladawi, A. (2018), "Eccentrically loaded SFRC-filled stainless steel columns", Struct. Build., 172(7), 1751-7702. https://doi.org/10.1680/jstbu.17.00165.
  17. Ellobody, E. and Young, B. (2011), "Numerical simulation of concrete encased steel composite columns", J. Constr. Steel Res., 67(2), 211-222. https://doi.org/10.1016/j.jcsr.2010.08.003.
  18. Ellobody, E., Young, B. and Lam, D. (2011), "Eccentrically loaded concrete encased steel composite columns", Thin Wall. Struct., 49(1), 53-65. https://doi.org/10.1016/j.tws.2010.08.006.
  19. Hassan, W.M., Reyes, J.C., Gonzalez, C., Pallares, F.J. and Spinel, J.S. (2021), "Seismic vulnerability and resilience of steel-reinforced concrete (SRC) composite column buildings with non-seismic details", Eng. Struct., 244, 112810. https://doi.org/10.1016/j.engstruct.2021.112810.
  20. Huang, Z., Huang, X., Li, W., Chen, C., Li, Y., Lin, Z. and Liao, W.-I. (2021), "Bond-slip behaviour of H-shaped steel embedded in UHPFRC", Steel Compos. Struct., 38(5), 563-582. https://doi.org/10.12989/scs.2021.38.5.563.
  21. Huang, Z., Huang, X., Li, W. and Zhang, J. (2020), "Compressive resistance behavior of UHPFRC encased steel composite stub column", Steel Compos. Struct., 37, 211-227. https://doi.org/10.12989/scs.2020.37.2.211.
  22. Kayali, O. (2008), "Fly ash lightweight aggregates in high performance concrete", Constr. Build. Mater., 22(12), 2393-2399. https://doi.org/10.1016/j.conbuildmat.2007.09.001.
  23. Khadiranaikar, R.B. and Awati, M.M. (2012), "Concrete stress distribution factors for high-performance concrete", J. Struct. Eng., 138(3), 402-415. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000465.
  24. Khan, M.K.I., Lee, C.K. and Zhang, Y.X. (2021), "Parametric study on high strength ECC-CES composite columns under axial compression", J. Build. Eng., 44, 102883. https://doi.org/10.1016/j.jobe.2021.102883.
  25. Kratzig, W.B. and Polling, R. (2004), "An elasto-plastic damage model for reinforced concrete with minimum number of material parameters", Comput. Struct., 82(15), 1201-1215. https://doi.org/10.1016/j.compstruc.2004.03.002.
  26. Kupfer, H., Hilsdorf, H.K. and Hubert, R. (1969), "Behaviour of concrete under biaxial stresses", J. Proc., 66(8), 656-666.
  27. Kuranovas, A. and Kvedaras, A.K. (2007), "Behaviour of hollow concrete-filled steel tubular composite elements", J. Civil Eng. Manage., 13(2), 131-141. https://doi.org/10.1080/13923730.2007.9636429.
  28. Lai, B., Liew, J.R. and Wang, T. (2019), "Buckling behaviour of high strength concrete encased steel composite columns", J. Constr. Steel Res., 154, 27-42. https://doi.org/10.1016/j.jcsr.2018.11.023.
  29. Lai, B. and Liew, J.Y.R. (2020a), "Axial-moment interaction of high strength concrete encased steel composite columns: Design recommendation", J. Constr. Steel Res., 170, 106136. https://doi.org/10.1016/j.jcsr.2020.106136.
  30. Lai, B. and Liew, J.Y.R. (2020b), "Axial-moment interaction of high strength concrete encased steel composite columns: Experimental investigation", J. Constr. Steel Res., 175, 106370. https://doi.org/10.1016/j.jcsr.2020.106370.
  31. Lai, B. and Liew, J.Y.R. (2020c), "Design and testing of concrete encased steel composite beam-columns with C90 concrete and S690 steel section", Eng. Struct., 220, 110995. https://doi.org/10.1016/j.engstruct.2020.110995.
  32. Lai, B. and Liew, J.Y.R. (2021), "Investigation on axial load-shorting behaviour of high strength concrete encased steel composite section", Eng. Struct., 227, 111401. https://doi.org/10.1016/j.engstruct.2020.111401.
  33. Li, F., Yu, Z. and Hu, Y. (2019), "Experimental study on dynamic performance of self-compacting lightweight aggregate concrete under compression", Adv. Civil Eng., 2019, Article ID 5384601. https://doi.org/10.1155/2019/5384601.
  34. Liu, C., Fan, Z., Chen, X., Zhu, C., Wang, H. and Bai, G. (2019a), "Experimental study on bond behavior between section steel and RAC under full replacement ratio", KSCE J. Civil Eng., 23(3), 1159-1170. https://doi.org/10.1007/s12205-019-0702-1.
  35. Liu, X., Wu, T. and Liu, Y. (2019b), "Stress-strain relationship for plain and fibre-reinforced lightweight aggregate concrete", Constr. Build. Mater., 225, 256-272. https://doi.org/10.1016/j.conbuildmat.2019.07.135.
  36. Ma, Y. and Jia, J. (2017), "The influence of different parameter on the seismic behavior of SRUHSC frame", Adv. Mater. Sci. Eng., 2017, Article ID 3495150. https://doi.org/10.1155/2017/3495150.
  37. Mander, J.B., Priestley, M.J.N. and Park, R. (1988a), "Observed stress-strain behavior of confined concrete", J. Struct. Eng., 114(8), 1827-1849. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1827).
  38. Mander, J.B., Priestley, M.J.N. and Park, R. (1988b), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804).
  39. Mejahed, A. (1999), Structural Engineer's Guide for Designing and Implementing Concrete Structures, the Second Part: Ordinary Concrete and Its Properties, Dar El-Ktop, Egypt.
  40. Mertol, H.C., Rizkalla, S., Zia, P. and Mirmiran, A. (2008), "Characteristics of compressive stress distribution in high-strength concrete", ACI Struct. J., 105(5), 626.
  41. Morino, S., Matsui, C. and Watanabe, H. (1985), "Strength of biaxially loaded SRC columns", Am. Soc. Civil Eng., 185-194.
  42. Mostafa, M.M.A., Chen, S., Wu, T., Liu, X. and Liu, Y. (2022a), "Experimental seismic analysis of new types of steel-reinforced lightweight concrete columns with cross-shaped steel section", J. Build. Eng., 60, 105202. https://doi.org/10.1016/j.jobe.2022.105202.
  43. Mostafa, M.M.A., Wu, T. and Fu, B. (2021a), "Axial behavior of steel reinforced lightweight aggregate concrete columns: Analytical studies", Steel Compos. Struct., 38(2), 223-239. https://doi.org/10.12989/scs.2021.38.2.223.
  44. Mostafa, M.M.A., Wu, T. and Liu, X. (2022b), "Bond-slip behaviors of composite steel-reinforced high strength lightweight aggregate concrete columns with innovative X-shaped steel sections", Constr. Build. Mater., 37, 127838. https://doi.org/10.1016/j.conbuildmat.2022.127838.
  45. Mostafa, M.M.A., Wu, T., Liu, X. and Fu, B. (2019), "The composite steel reinforced concrete column under axial and seismic loads: A review", Int. J. Steel Struct., 19(6), 1969-1987. https://doi.org/10.1007/s13296-019-00257-9
  46. Mostafa, M.M.A., Wu, T., Liu, X. and Fu, B. (2021b), "Axial behavior of the steel reinforced lightweight aggregate concrete (SRLAC) short columns", Steel Compos. Struct., 39(5), 583-598. https://doi.org/10.12989/scs.2021.39.5.583.
  47. Ricles, J.M. and Paboojian, S.D. (1994), "Seismic performance of steel-encased composite columns", J. Struct. Eng., 120(8), 2474-2494. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:8(2474)
  48. Rico, S., Farshidpour, R. and Tehrani, F.M. (2017), "State-of-the-art report on fiber-reinforced lightweight aggregate concrete masonry", Adv. Civil Eng., 2017, Article ID 8078346. https://doi.org/10.1155/2017/8078346.
  49. Roufael, G., Beaucour, A.L., Eslami, J., Hoxha, D. and Noumowe, A. (2021), "Influence of lightweight aggregates on the physical and mechanical residual properties of concrete subjected to high temperatures", Constr. Build. Mater., 268, 121221. https://doi.org/10.1016/j.conbuildmat.2020.121221.
  50. Soliman, K.Z., Arafa, A.I. and Elrakib, T.M. (2013), "Review of design codes of concrete encased steel short columns under axial compression", HBRC J., 9(2), 134-143. http://doi.org/10.1016/j.hbrcj.2013.02.002.
  51. Stefan, R., Sura, J., Prochazka, J., Kohoutkova, A. and Wald, F. (2019), "Numerical investigation of slender reinforced concrete and steel-concrete composite columns at normal and high temperatures using sectional analysis and moment-curvature approach", Eng. Struct., 190, 285-305. https://doi.org/10.1016/j.engstruct.2019.03.071.
  52. Tran, C.T.N. and Li, B. (2018), "Seismic performance of RC short columns with light transverse reinforcement", Struct. Eng. Mech., 67, 93-104. https://doi.org/10.12989/sem.2018.67.1.093.
  53. Venkateshwaran, A., Lai, B. and Liew, J.Y.R. (2021), "Design of Steel fiber-reinforced high-strength concrete- encased steel short columns and beams", ACI Struct. J., 118(1), 45-59. https://doi.org/10.14359/51728077.
  54. Wang, H., Li, J. and Song, Y. (2018a), "Numerical study and design recommendations of eccentrically loaded partially encased composite columns", Int. J. Steel Struct., 19(3), 991-1009. https://doi.org/10.1007/s13296-018-0179-7.
  55. Wang, J., Liu, Z., Xue, J. and Hu, C. (2018b), "Effects of loading history on seismic performance of SRC T-shaped column, Part I: Loading along web", Struct. Eng. Mech., 68(2), 193-201. https://doi.org/10.12989/sem.2018.68.2.193.
  56. Wang, X., Liu, J. and Zhou, X. (2016), "Behaviour and design method of short square tubed-steel-reinforced-concrete columns under eccentric loading", J. Constr. Steel Res., 116, 193-203. http://doi.org/10.1016/j.jcsr.2015.09.018.
  57. Wu, C., Pan, Z., Su, R., Leung, C. and Meng, S. (2017), "Seismic behavior of steel reinforced ECC columns under constant axial loading and reversed cyclic lateral loading", Mater. Struct., 50(1), 78. https://doi.org/10.1617/s11527-016-0947-9.
  58. Yan, C., Yang, D., Ma, Z.J. and Jia, J. (2017), "Hysteretic model of SRUHSC column and SRC beam joints considering damage effects", Mater. Struct., 50(1), 88. https://doi.org/10.1617/s11527-016-0959-5.
  59. Yan, J.B., Liew, J.Y.R., Zhang, M.H. and Sohel, K.M.A. (2015), "Experimental and analytical study on ultimate strength behavior of steel-concrete-steel sandwich composite beam structures", Mater. Struct., 48(5), 1523-1544. https://doi.org/10.1617/s11527-014-0252-4.
  60. Yang, Y., Chen, Y., Zhang, W. and Feng, S. (2019a), "Behavior of partially precast steel reinforced concrete columns under eccentric loading", Eng. Struct., 197, 109429. https://doi.org/10.1016/j.engstruct.2019.109429.
  61. Yang, Y., Xue, Y., Yu, Y. and Gong, Z. (2019b), "Post-fire test of precast steel reinforced concrete stub columns under eccentric compression", Steel Compos. Struct., 33(1), 111-122. http://doi.org/10.12989/scs.2019.33.1.111.
  62. Zhang, M.H. and Gjvorv, O.E. (1991), "Mechanical properties of high-strength lightweight concrete", ACI Mater. J., 88(3), 240-247.
  63. Zhang, X., Deng, D., Lin, X., Yang, J. and Fu, L. (2019), "Mechanical performance of sand-lightweight concrete-filled steel tube stub column under axial compression", Struct. Eng. Mech., 69(6), 627-635. https://doi.org/10.12989/sem.2019.69.6.627.
  64. Zhao, G.T., Zhang, M.X. and Li, Y.H. (2009), "Behavior of slender steel concrete composite columns in eccentric loading", J. Shanghai Univ. (English Ed.), 13(6), 481-488. https://doi.org/10.1007/s11741-009-0611-2.