DOI QR코드

DOI QR Code

Evolution of the Stethoscope: Advances with the Adoption of Machine Learning and Development of Wearable Devices

  • Yoonjoo Kim (Division of Pulmonology, Department of Internal Medicine, Chungnam National University College of Medicine) ;
  • YunKyong Hyon (Division of Industrial Mathematics, National Institute for Mathematical Sciences) ;
  • Seong-Dae Woo (Division of Pulmonology, Department of Internal Medicine, Chungnam National University College of Medicine) ;
  • Sunju Lee (Division of Industrial Mathematics, National Institute for Mathematical Sciences) ;
  • Song-I Lee (Division of Pulmonology, Department of Internal Medicine, Chungnam National University College of Medicine) ;
  • Taeyoung Ha (Division of Industrial Mathematics, National Institute for Mathematical Sciences) ;
  • Chaeuk Chung (Division of Pulmonology, Department of Internal Medicine, Chungnam National University College of Medicine)
  • 투고 : 2023.05.09
  • 심사 : 2023.08.15
  • 발행 : 2023.10.31

초록

The stethoscope has long been used for the examination of patients, but the importance of auscultation has declined due to its several limitations and the development of other diagnostic tools. However, auscultation is still recognized as a primary diagnostic device because it is non-invasive and provides valuable information in real-time. To supplement the limitations of existing stethoscopes, digital stethoscopes with machine learning (ML) algorithms have been developed. Thus, now we can record and share respiratory sounds and artificial intelligence (AI)-assisted auscultation using ML algorithms distinguishes the type of sounds. Recently, the demands for remote care and non-face-to-face treatment diseases requiring isolation such as coronavirus disease 2019 (COVID-19) infection increased. To address these problems, wireless and wearable stethoscopes are being developed with the advances in battery technology and integrated sensors. This review provides the history of the stethoscope and classification of respiratory sounds, describes ML algorithms, and introduces new auscultation methods based on AI-assisted analysis and wireless or wearable stethoscopes.

키워드

과제정보

This study was supported by a 2021-Grant from the Korean Academy of Tuberculosis and Respiratory Diseases, National Research Foundation of Korea (2022R1F1A1076515), and National Institute for Mathematical Sciences (NIMS) grant funded by the Korean government (No. B23910000).

참고문헌

  1. Roguin A. Rene Theophile Hyacinthe Laennec (1781-1826): the man behind the stethoscope. Clin Med Res 2006;4:230-5.  https://doi.org/10.3121/cmr.4.3.230
  2. Bloch H. The inventor of the stethoscope: Rene Laennec. J Fam Pract 1993;37:191. 
  3. Bohadana A, Izbicki G, Kraman SS. Fundamentals of lung auscultation. N Engl J Med 2014;370:744-51.  https://doi.org/10.1056/NEJMra1302901
  4. Coucke PA. Laennec versus Forbes: tied for the score! How technology helps us interpret auscultation. Rev Med Liege 2019;74:543-51. 
  5. Arts L, Lim EH, van de Ven PM, Heunks L, Tuinman PR. The diagnostic accuracy of lung auscultation in adult patients with acute pulmonary pathologies: a meta-analysis. Sci Rep 2020;10:7347. 
  6. Swarup S, Makaryus AN. Digital stethoscope: technology update. Med Devices (Auckl) 2018;11:29-36.  https://doi.org/10.2147/MDER.S135882
  7. Fernandez-Granero MA, Sanchez-Morillo D, Leon-Jimenez A. Computerised analysis of telemonitored respiratory sounds for predicting acute exacerbations of COPD. Sensors (Basel) 2015;15:26978-96.  https://doi.org/10.3390/s151026978
  8. Altan G, Kutlu Y, Allahverdi N. Deep learning on computerized analysis of chronic obstructive pulmonary disease. IEEE J Biomed Health Inform 2020;24:1344-50.  https://doi.org/10.1109/JBHI.2019.2931395
  9. Mondal A, Banerjee P, Tang H. A novel feature extraction technique for pulmonary sound analysis based on EMD. Comput Methods Programs Biomed 2018;159:199-209.  https://doi.org/10.1016/j.cmpb.2018.03.016
  10. Kevat A, Kalirajah A, Roseby R. Artificial intelligence accuracy in detecting pathological breath sounds in children using digital stethoscopes. Respir Res 2020;21:253. 
  11. Jung SY, Liao CH, Wu YS, Yuan SM, Sun CT. Efficiently classifying lung sounds through depthwise separable CNN models with fused STFT and MFCC features. Diagnostics (Basel) 2021;11:732. 
  12. Meng F, Shi Y, Wang N, Cai M, Luo Z. Detection of respiratory sounds based on wavelet coefficients and machine learning. IEEE Access 2020;8:155710-20.  https://doi.org/10.1109/ACCESS.2020.3016748
  13. Fraiwan M, Fraiwan L, Alkhodari M, Hassanin O. Recognition of pulmonary diseases from lung sounds using convolutional neural networks and long short-term memory. J Ambient Intell Humaniz Comput 2022;13:4759-71.  https://doi.org/10.1007/s12652-021-03184-y
  14. Aras S, Ozturk M, Gangal A. Automatic detection of the respiratory cycle from recorded, single-channel sounds from lungs. Turk J Electr Eng Comput Sci 2018;26:11-22.  https://doi.org/10.3906/elk-1705-16
  15. Gurung A, Scrafford CG, Tielsch JM, Levine OS, Checkley W. Computerized lung sound analysis as diagnostic aid for the detection of abnormal lung sounds: a systematic review and meta-analysis. Respir Med 2011;105:1396-403.  https://doi.org/10.1016/j.rmed.2011.05.007
  16. Palaniappan R, Sundaraj K, Sundaraj S. Artificial intelligence techniques used in respiratory sound analysis: a systematic review. Biomed Tech (Berl) 2014;59:7-18.  https://doi.org/10.1515/bmt-2013-0074
  17. Altan G, Kutlu Y, Gokcen A. Chronic obstructive pulmonary disease severity analysis using deep learning onmulti-channel lung sounds. Turk J Electr Eng Comput Sci 2020;28:2979-96.  https://doi.org/10.3906/elk-2004-68
  18. Chen H, Yuan X, Pei Z, Li M, Li J. Triple-classification of respiratory sounds using optimized s-transform and deep residual networks. IEEE Access 2019;7:32845-52.  https://doi.org/10.1109/ACCESS.2019.2903859
  19. Hsu FS, Huang SR, Huang CW, Huang CJ, Cheng YR, Chen CC, et al. Benchmarking of eight recurrent neural network variants for breath phase and adventitious sound detection on a self-developed open-access lung sound database: HF_Lung_V1. PLoS One 2021;16:e0254134. 
  20. Grzywalski T, Piecuch M, Szajek M, Breborowicz A, Hafke-Dys H, Kocinski J, et al. Practical implementation of artificial intelligence algorithms in pulmonary auscultation examination. Eur J Pediatr 2019;178:883-90.  https://doi.org/10.1007/s00431-019-03363-2
  21. Aykanat M, Kilic O, Kurt B, Saryal S. Classification of lung sounds using convolutional neural networks. EURASIP J Image Video Process 2017;2017:65. 
  22. Altan G, Kutlu Y, Pekmezci AO, Nural S. Deep learning with 3D-second order difference plot on respiratory sounds. Biomed Signal Process Control 2018;45:58-69.  https://doi.org/10.1016/j.bspc.2018.05.014
  23. Chamberlain D, Kodgule R, Ganelin D, Miglani V, Fletcher RR. Application of semi-supervised deep learning to lung sound analysis. Annu Int Conf IEEE Eng Med Biol Soc 2016;2016:804-7. 
  24. Murphy RL, Vyshedskiy A, Power-Charnitsky VA, Bana DS, Marinelli PM, Wong-Tse A, et al. Automated lung sound analysis in patients with pneumonia. Respir Care 2004;49:1490-7. 
  25. Arun Babu T, Sharmila V. Auscultating with personal protective equipment (PPE) during COVID-19 pandemic: challenges and solutions. Eur J Obstet Gynecol Reprod Biol 2021;256:509-10.  https://doi.org/10.1016/j.ejogrb.2020.11.063
  26. Vasudevan RS, Horiuchi Y, Torriani FJ, Cotter B, Maisel SM, Dadwal SS, et al. Persistent value of the stethoscope in the age of COVID-19. Am J Med 2020;133:1143-50.  https://doi.org/10.1016/j.amjmed.2020.05.018
  27. White SJ. Auscultation without contamination: a solution for stethoscope use with personal protective equipment. Ann Emerg Med 2015;65:235-6.  https://doi.org/10.1016/j.annemergmed.2014.11.021
  28. Mun SK. Non-face-to-face treatment in Korea: suggestions for essential conditions. Korean J Med 2023;98:1-3.  https://doi.org/10.3904/kjm.2023.98.1.1
  29. Klum M, Leib F, Oberschelp C, Martens D, Pielmus AG, Tigges T, et al. Wearable multimodal stethoscope patch for wireless biosignal acquisition and long-term auscultation. Annu Int Conf IEEE Eng Med Biol Soc 2019;2019:5781-5. 
  30. Liu Y, Norton JJ, Qazi R, Zou Z, Ammann KR, Liu H, et al. Epidermal mechano-acoustic sensing electronics for cardiovascular diagnostics and human-machine interfaces. Sci Adv 2016;2:e1601185. 
  31. Yilmaz G, Rapin M, Pessoa D, Rocha BM, de Sousa AM, Rusconi R, et al. A wearable stethoscope for long-term ambulatory respiratory health monitoring. Sensors (Basel) 2020;20:5124. 
  32. Klum M, Urban M, Tigges T, Pielmus AG, Feldheiser A, Schmitt T, et al. Wearable cardiorespiratory monitoring employing a multimodal digital patch stethoscope: estimation of ECG, PEP, LVET and respiration using a 55 mm single-lead ECG and phonocardiogram. Sensors (Basel) 2020;20:2033. 
  33. Bardou D, Zhang K, Ahmad SM. Lung sounds classification using convolutional neural networks. Artif Intell Med 2018;88:58-69.  https://doi.org/10.1016/j.artmed.2018.04.008
  34. Zimmerman B, Williams D. Lung sounds. In: StatPearls. Treasure Island: StatPearls Publishing; 2022 [cited 2023 Aug 21]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK537253. 
  35. Reichert S, Gass R, Brandt C, Andres E. Analysis of respiratory sounds: state of the art. Clin Med Circ Respirat Pulm Med 2008;2:45-58.  https://doi.org/10.4137/CCRPM.S530
  36. Sengupta N, Sahidullah M, Saha G. Lung sound classification using cepstral-based statistical features. Comput Biol Med 2016;75:118-29.  https://doi.org/10.1016/j.compbiomed.2016.05.013
  37. Serbes G, Sakar CO, Kahya YP, Aydin N. Feature extraction using time-frequency/scale analysis and ensemble of feature sets for crackle detection. Annu Int Conf IEEE Eng Med Biol Soc 2011;2011:3314-7. 
  38. Faustino P, Oliveira J, Coimbra M. Crackle and wheeze detection in lung sound signals using convolutional neural networks. Annu Int Conf IEEE Eng Med Biol Soc 2021;2021:345-8. 
  39. Vyshedskiy A, Alhashem RM, Paciej R, Ebril M, Rudman I, Fredberg JJ, et al. Mechanism of inspiratory and expiratory crackles. Chest 2009;135:156-64.  https://doi.org/10.1378/chest.07-1562
  40. Gavriely N, Shee TR, Cugell DW, Grotberg JB. Flutter in flow-limited collapsible tubes: a mechanism for generation of wheezes. J Appl Physiol (1985) 1989;66:2251-61.  https://doi.org/10.1152/jappl.1989.66.5.2251
  41. Pasterkamp H, Brand PL, Everard M, Garcia-Marcos L, Melbye H, Priftis KN. Towards the standardisation of lung sound nomenclature. Eur Respir J 2016;47:724-32.  https://doi.org/10.1183/13993003.01132-2015
  42. Cheng TO. Hippocrates and cardiology. Am Heart J 2001;141:173-83.  https://doi.org/10.1067/mhj.2001.112490
  43. Hajar R. The art of listening. Heart Views 2012;13:24-5.  https://doi.org/10.4103/1995-705X.96668
  44. Bishop PJ. Evolution of the stethoscope. J R Soc Med 1980;73:448-56.  https://doi.org/10.1177/014107688007300611
  45. Barrett PM, Topol EJ. To truly look inside. Lancet 2016;387:1268-9.  https://doi.org/10.1016/S0140-6736(16)30027-7
  46. Permin H, Norn S. The stethoscope: a 200th anniversary. Dan Medicinhist Arbog 2016;44:85-100. 
  47. Choudry M, Stead TS, Mangal RK, Ganti L. The history and evolution of the stethoscope. Cureus 2022;14:e28171. 
  48. Lee SH, Kim YS, Yeo WH. Advances in microsensors and wearable bioelectronics for digital stethoscopes in health monitoring and disease diagnosis. Adv Healthc Mater 2021;10:e2101400. 
  49. Kim Y, Hyon Y, Jung SS, Lee S, Yoo G, Chung C, et al. Respiratory sound classification for crackles, wheezes, and rhonchi in the clinical field using deep learning. Sci Rep 2021;11:17186. 
  50. Fernandez-Granero MA, Sanchez-Morillo D, Leon-Jimenez A. An artificial intelligence approach to early predict symptom-based exacerbations of COPD. Biotechnol Biotechnol Equip 2018;32:778-84.  https://doi.org/10.1080/13102818.2018.1437568
  51. Saldanha J, Chakraborty S, Patil S, Kotecha K, Kumar S, Nayyar A. Data augmentation using Variational Autoencoders for improvement of respiratory disease classification. PLoS One 2022;17:e0266467. 
  52. Rocha BM, Filos D, Mendes L, Serbes G, Ulukaya S, Kahya YP, et al. An open access database for the evaluation of respiratory sound classification algorithms. Physiol Meas 2019;40:035001. 
  53. Alqudah AM, Qazan S, Obeidat YM. Deep learning models for detecting respiratory pathologies from raw lung auscultation sounds. Soft comput 2022;26:13405-29.  https://doi.org/10.1007/s00500-022-07499-6
  54. Fraiwan M, Fraiwan L, Khassawneh B, Ibnian A. A dataset of lung sounds recorded from the chest wall using an electronic stethoscope. Data Brief 2021;35:106913. 
  55. Zhang P, Wang B, Liu Y, Fan M, Ji Y, Xu H, et al. Lung auscultation of hospitalized patients with SARS-CoV-2 pneumonia via a wireless stethoscope. Int J Med Sci 2021;18:1415-22.  https://doi.org/10.7150/ijms.54987
  56. Lee SH, Kim YS, Yeo MK, Mahmood M, Zavanelli N, Chung C, et al. Fully portable continuous real-time auscultation with a soft wearable stethoscope designed for automated disease diagnosis. Sci Adv 2022;8:eabo5867. 
  57. Joshitha C, Kanakaraja P, Rooban S, Prasad BSDR, Rao BG, Teja SVS. Design and implementation of Wi-Fi enabled contactless electronic stethoscope. 2022 International Conference on Sustainable Computing and Data Communication Systems (ICSCDS); 2022 Apr 7-9: Erode, India: IEEE; 2022. 
  58. Lenz I, Rong Y, Bliss D. Contactless stethoscope enabled by radar technology. Bioengineering (Basel) 2023;10:169. 
  59. Au YK, Muqeem T, Fauveau VJ, Cardenas JA, Geris BS, Hassen GW, et al. Continuous monitoring versus intermittent auscultation of wheezes in patients presenting with acute respiratory distress. J Emerg Med 2022;63:582-91.  https://doi.org/10.1016/j.jemermed.2022.07.001
  60. Kikutani K, Ohshimo S, Sadamori T, Ohki S, Giga H, Ishii J, et al. Quantification of respiratory sounds by a continuous monitoring system can be used to predict complications after extubation: a pilot study. J Clin Monit Comput 2023;37:237-48.  https://doi.org/10.1007/s10877-022-00884-4
  61. Wang H, Toker A, Abbas G, Wang LY. Application of a continuous respiratory sound monitoring system in thoracic surgery. J Biomed Res 2021;35:491-4.  https://doi.org/10.7555/JBR.35.20210016
  62. Sonko ML, Arnold TC, Kuznetsov IA. Machine learning in point of care ultrasound. POCUS J 2022;7(Kidney):78-87.  https://doi.org/10.24908/pocus.v7iKidney.15345
  63. Chen H, Wu L, Dou Q, Qin J, Li S, Cheng JZ, et al. Ultrasound standard plane detection using a composite neural network framework. IEEE Trans Cybern 2017;47:1576-86.  https://doi.org/10.1109/TCYB.2017.2685080
  64. Knackstedt C, Bekkers SC, Schummers G, Schreckenberg M, Muraru D, Badano LP, et al. Fully automated versus standard tracking of left ventricular ejection fraction and longitudinal strain: the FAST-EFs Multicenter Study. J Am Coll Cardiol 2015;66:1456-66.  https://doi.org/10.1016/j.jacc.2015.07.052
  65. Baloescu C, Toporek G, Kim S, McNamara K, Liu R, Shaw MM, et al. Automated lung ultrasound B-line assessment using a deep learning algorithm. IEEE Trans Ultrason Ferroelectr Freq Control 2020;67:2312-20. https://doi.org/10.1109/TUFFC.2020.3002249