DOI QR코드

DOI QR Code

Morphometric and genetic diversity of Rasbora several species from farmed and wild stocks

  • Bambang Retnoaji (Faculty of Biology, Universitas Gadjah Mada Jalan Teknika Selatan) ;
  • Boby Muslimin (Research Center for Conservation of Marine and Inland Water Resources, National Research and Innovation Agency) ;
  • Arif Wibowo (Research Center for Conservation of Marine and Inland Water Resources, National Research and Innovation Agency) ;
  • Ike Trismawanti (Research Institute for Inland Fisheries and Extension, Ministry of Fisheries and Marine Affairs Indonesia)
  • 투고 : 2022.10.27
  • 심사 : 2023.07.12
  • 발행 : 2023.09.30

초록

The morphology and genetic identification of Rasbora lateristriata and Rasbora argyrotaenia between cultivated and wild populations has never been reported. This study compares morphology and cytochrome c oxidase (COI) genes between farmed and wild stock Rasbora spp. in Java and Sumatra island, Indonesia. We analyzed the truss network measurement (TNM) characters of 80 fish using discriminant function analysis statistical tests. DNA was extracted from muscle tissue of 24 fish specimens, which was then followed by polymerase chain reaction, sequencing, phylogenetic analysis, fixation index analysis, and statistical analysis of haplotype networks. Basic Local Alignment Search Tool analysis validated the following species: R. lateristriata and R. argyrotaenia from farming (Jogjakarta); Rasbora agryotaenia (Purworejo), R. lateristriata (Purworejo and Malang), Rasbora dusonensis (Palembang), and Rasbora einthovenii (Riau) from natural resources. Based on TNM characters, Rasbora spp. were divided into four groups, referring to four distinct characters in the middle of the body. The phylogenetic tree is divided into five clades. The genetic distance between R. argyrotaenia (Jogjakarta) and R. lateristriata (Malang) populations (0.66) was significantly different (p < 0.05). R. lateristriata (Purworejo) has the highest nucleotide diversity (0.43). R. argyrotaenia from Jogjakarta and Purworejo shared the same haplotype. The pattern of gene flow among them results from the two populations' close geographic proximity and environmental effects. R. argyrotaenia had low genetic diversity, therefore, increasing heterozygosity in cultivated populations is necessary to avoid inbreeding. Otherwise, R. lateristriata (Purworejo) had a greater gene variety that could be used to develop breeding. In conclusion, the middle body parts are a distinguishing morphometric character of Rasbora spp., and the COI gene is more heterozygous in the wild population than in farmed fish, therefore, enrichment of genetic variation is required for sustainable Rasbora fish farming.

키워드

과제정보

The author would like to extend the deepest gratitude to the Faculty of Biology, Universitas Gadjah Mada for the research facilities.

참고문헌

  1. Aminan AW, Kit LLW, Hui CH, Sulaiman B. Morphometric analysis and genetic relationship of Rasbora spp. in Sarawak, Malaysia. Trop Life Sci Res. 2020;31:33-49. https://doi.org/10.21315/tlsr2020.31.2.3
  2. Besnier F, Glover KA, Lien S, Kent M, Hansen MM, Shen X, et al. Identification of quantitative genetic components of fitness variation in farmed, hybrid and native salmon in the wild. Heredity. 2015;115:47-55. https://doi.org/10.1038/hdy.2015.15
  3. Brown AM, Bejder L, Parra GJ, Cagnazzi D, Hunt T, Smith JL, et al. Sexual dimorphism and geographic variation in dorsal fin features of Australian humpback dolphins, Sousa sahulensis. Adv Mar Biol. 2016;73:273-314. https://doi.org/10.1016/bs.amb.2015.08.002
  4. Carvalho GR. Evolutionary aspects of fish distribution: genetic variability and adaptation. J Fish Biol. 1993;43:53-73. https://doi.org/10.1111/j.1095-8649.1993.tb01179.x
  5. Dogdu SA, Turan C. Genetic and morphological impact of the cultured gilthead sea bream (Sparus aurata Linnaeus, 1758) populations on wild stocks. Egypt J Aquat Biol Fish. 2021;25:499-511. https://doi.org/10.21608/ejabf.2021.191035
  6. Domingues A, Alexandre CM, Mateus CS, Silva S, Pereira J, Almeida PR. Into the wild: a new approach to the aquaculture production of brown trout (Salmo trutta L.) to enhance restocking success. Biol Life Sci Forum. 2022;13:115.
  7. Duong TY, Scribner KT. Regional variation in genetic diversity between wild and cultured populations of bighead catfish (Clarias macrocephalus) in the Mekong delta. Fish Res. 2018;207:118-25. https://doi.org/10.1016/j.fishres.2018.06.012
  8. Erhana E, Retnoaji B. Histological structure of intestine, number of goblet cells, and survival rate of wader pari (Rasbora lateristriata Bleeker, 1854) due to influence of temperature. In: Proceedings of the 6th International Conference on Biological Science; 2019; Yogyakarta, Indonesia.
  9. Excoffier L, Lischer HEL. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour. 2010;10:564-7. https://doi.org/10.1111/j.1755-0998.2010.02847.x
  10. Furlan E, Stoklosa J, Griffiths J, Gust N, Ellis R, Huggins RM, et al. Small population size and extremely low levels of genetic diversity in island populations of the platypus, Ornithorhynchus anatinus. Ecol Evol. 2012;2:844-57. https://doi.org/10.1002/ece3.195
  11. Gonzalez-Martinez A, Lopez M, Molero HM, Rodriguez J, Gonzalez M, Barba C, et al. Morphometric and meristic characterization of native chame fish (Dormitator latifrons) in Ecuador using multivariate analysis. Animals. 2020;10:1805.
  12. Harris A, Liliyanti MA, Sumahiradewi LG, Artiningrum NT. Morphometric, meristic characters, and gonad mature level of pepudah fish (Rasbora lateristriata) from Sokong rivers, North Lombok district. Penbios J Pendidik Fis Sains. 2021;6:28-37.
  13. Hubert N, Lumbantobing D, Sholihah A, Dahruddin H, Delrieu-Trottin E, Busson F, et al. Revisiting species boundaries and distribution ranges of Nemacheilus spp. (Cypriniformes: Nemacheilidae) and Rasbora spp. (Cypriniformes: Cyprinidae) in Java, Bali and Lombok through DNA barcodes: implications for conservation in a biodiversity hotspot. Conserv Genet. 2019;20:517-29. https://doi.org/10.1007/s10592-019-01152-w
  14. Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16:111-20. https://doi.org/10.1007/BF01731581
  15. Klima O, Kopp R, Hadasova L, Mares J. Fin condition of fish kept in aquacultural systems. Acta Univ Agric Silvic Mendel Brun. 2013;61:1907-16. https://doi.org/10.11118/actaun201361061907
  16. Kusuma WE, Ratmuangkhwang S, Kumazawa Y. Molecular phylogeny and historical biogeography of the Indonesian freshwater fish Rasbora lateristriata species complex (Actinopterygii: Cyprinidae): cryptic species and west-to-east divergences. Mol Phylogenet Evol. 2016;105: 212-23. https://doi.org/10.1016/j.ympev.2016.08.014
  17. Kusuma WE, Samuel PD, Wiadnya DGR, Hariati AM, Kumazawa Y. Complete mitogenome sequence of Rasbora argyrotaenia (Actinopterygii: Cyprinidae). Mitochondrial DNA B Resour. 2017;2:373-4. https://doi.org/10.1080/23802359.2017.1347835
  18. Lumbantobing DN. Four new species of Rasbora of the Sumatrana group (Teleostei: Cyprinidae) from northern Sumatra, Indonesia. Zootaxa. 2014;3764:1-25. https://doi.org/10.11646/zootaxa.3764.1.1
  19. Manganang YAP, Hananya A, Pujiyati S, Retnoaji B. Bio-fuel algal waste diet effect on growth and histological structure of wader pari (Rasbora lateristriata Bleeker, 1854) intestine. IOP Conf Ser Earth Environ Sci. 2020;429:012028.
  20. Mccusker MR, Bentzen P. Positive relationships between genetic diversity and abundance in fishes. Mol Ecol. 2010;19:4852-62. https://doi.org/10.1111/j.1365-294X.2010.04822.x
  21. Muchlisin ZA. Morphometric variations of Rasbora group (Pisces: Cyprinidae) in lake Laut Tawar, Aceh Province, Indonesia, based on truss character analysis. Hayati J Biosci. 2013;20:138-43. https://doi.org/10.4308/hjb.20.3.138
  22. Munthe I, Isa M, Winaruddin W, Sulasmi S, Herrialfian H, Rusli R. Protein content analysis of depik (Rasbora tawarensis) in Laut Tawar lake Aceh Tengah. J Med Vet. 2016;10:67-9. https://doi.org/10.21157/j.med.vet..v10i1.4044
  23. Muslimin B, Rustadi, Hardaningsih, Retnoaji B. Morphometric variation of cork fish (Channa striata Bloch, 1793) from nine populations in Sumatra island, Indonesia. Iran J Ichthyol. 2020b;7:209-21.
  24. Muslimin B, Rustadi, Hardaningsih, Retnoaji B. Polymorphism in exon 4 of snakehead fish (Channa striata) growth hormone gene from Sumatra (Indonesia) and its association with growth traits. AACL Bioflux. 2020a;13:3163-74.
  25. Nei M. Genetic distance between populations. Am Nat. 1972;106:283-92. https://doi.org/10.1086/282771
  26. Pazo F, Sanchez S, Posner V, Sciara AA, Arranz SE, Villanova GV. Genetic diversity and structure of the commercially important native fish pacu (Piaractus mesopotamicus) from cultured and wild fish populations: relevance for broodstock management. Aquac Int. 2021;29:289-305. https://doi.org/10.1007/s10499-020-00626-w
  27. Pinsky ML, Palumbi SR. Meta-analysis reveals lower genetic diversity in overfished populations. Mol Ecol. 2014;23:29-39. https://doi.org/10.1111/mec.12509
  28. Prasetyo A, Retnoaji B. Migration biomodelling of wader pari fish (Rasbora lateristriata Bleeker, 1854) toward varied current direction and substrate type. In: Proceedings of the 6th International Conference on Biological Science; 2019; Yogyakarta, Indonesia.
  29. Ramadhaniaty M, Setyobudiandi I, Madduppa HH. Morphogenetic and population structure of two species marine bivalve (Ostreidae: Saccostrea cucullata and Crassostrea iredalei) in Aceh, Indonesia. Biodiversitas J Biol Divers. 2018;19:978-88. https://doi.org/10.13057/biodiv/d190329
  30. Retnoaji B, Nurhidayat L, Husni A, Suwarman. Cultivation and conservation of Indonesian native fish (Rasbora lateristriata) through fish farmer group empowerment in Yogyakarta. In: Proceedings of the 1st International Conference on Tropical Agriculture; 2017; Yogyakarta, Indonesia.
  31. Segvic-Bubic T, Talijancic I, Grubisic L, Izquierdo-Gomez D, Katavic I. Morphological and molecular differentiation of wild and farmed gilthead sea bream Sparus aurata: implications for management. Aquac Environ Interact. 2014;6:43-54. https://doi.org/10.3354/aei00111
  32. Sholihah A, Delrieu-Trottin E, Sukmono T, Dahruddin H, Risdawati R, Elvyra R, et al. Disentangling the taxonomy of the subfamily Rasborinae (Cypriniformes, Danionidae) in Sundaland using DNA barcodes. Sci Rep. 2020;10:2818.
  33. Sogandi S, Sanjaya RE, Baity N, Syahmani S. Identification of nutritional content and profiles of amino acids from selling fish (Rasbora sp.). J Nutr Food Res. 2020; 42:73-80.
  34. Turan C. A note on the examination of morphometric differentiation among fish populations: the truss system. Turk J Zool. 1999;23:259-64.
  35. Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN. DNA barcoding Australia's fish species. Philos Trans R Soc B Biol Sci. 2005;360:1847-57. https://doi.org/10.1098/rstb.2005.1716
  36. Whan-Air W, Thongprajukaew K, Salaeharae T, Yoonram K. Identification of wild and farmed broadhead catfish (Clarias macrocephalus Gunther, 1864) based on morphometry, digestive indexes and flesh quality. J Oceanol Limnol. 2018;36:1788-97. https://doi.org/10.1007/s00343-018-7205-7
  37. Willing EM, Dreyer C, van Oosterhout C. Estimates of genetic differentiation measured by FST do not necessarily require large sample sizes when using many SNP markers. PLOS ONE. 2012;7:e42649.
  38. Zhang X, Wu W, Li L, Ma X, Chen J. Genetic variation and relationships of seven sturgeon species and ten interspecific hybrids. Genet Sel Evol. 2013;45:21.
  39. Zulfadhli Z, Wijayanti N, Retnoaji B. The development of ovarian wader pari fish (Rasbora lateristriata Bleeker, 1854): histological approach. J Trop Fish. 2016;3:32-9.