DOI QR코드

DOI QR Code

Effects of phonological and phonetic information of vowels on perception of prosodic prominence in English

  • Suyeon Im (Department of English Language and Literature, Soongsil University)
  • Received : 2023.06.25
  • Accepted : 2023.09.01
  • Published : 2023.09.30

Abstract

This study investigates how the phonological and phonetic information of vowels influences prosodic prominence among linguistically untrained listeners using public speech in American English. We first examined the speech material's phonetic realization of vowels (i.e., maximum F0, F0 range, phone rate [as a measure of duration considering the speech rate of the utterance], and mean intensity). Results showed that the high vowels /i/ and /u/ likely had the highest max F0, while the low vowels /æ/ and /ɑ/ tended to have the highest mean intensity. Both high and low vowels had similarly high phone rates. Next, we examined the effects of the vowels' phonological and phonetic information on listeners' perceptions of prosodic prominence. The results showed that vowels significantly affected the likelihood of perceived prominence independent of acoustic cues. The high and low vowels affected probability of perceived prominence less than the mid vowels /ɛ/ and /ʌ/, although the former two were more likely to be phonetically enhanced in the speech than the latter. Overall, these results suggest that perceptions of prosodic prominence in English are not directly influenced by signal-driven factors (i.e., vowels' acoustic information) but are mediated by expectation-driven factors (e.g., vowels' phonological information).

Keywords

References

  1. Aylett, M., & Turk, A. (2004). The smooth signal redundancy hypothesis: A functional explanation for relationships between redundancy, prosodic prominence, and duration in spontaneous speech. Language and Speech, 47(1), 31-56. https://doi.org/10.1177/00238309040470010201
  2. Bates, D., Machler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67(1), 1-48. https://doi.org/10.18637/jss.v067.i01
  3. Baumann, S., & Winter, B. (2018). What makes a word prominent? Predicting untrained German listeners' perceptual judgments. Journal of Phonetics, 70, 20-38. https://doi.org/10.1016/j.wocn.2018.05.004
  4. Beckman, M. E. (1986). Stress and non-stress accent. Dordrecht, The Netherlands: Fortis.
  5. Bishop, J., Kuo, G., & Kim, B. (2020). Phonology, phonetics, and signal-extrinsic factors in the perception of prosodic prominence: Evidence from rapid prosody transcription. Journal of Phonetics, 82, 100977.
  6. Breen, M., Fedorenko, E., Wagner, M., & Gibson, E. (2010). Acoustic correlates of information structure. Language and Cognitive Processes, 25(7-9), 1044-1098. https://doi.org/10.1080/01690965.2010.504378
  7. Calhoun, S. (2010). The centrality of metrical structure in signaling information structure: A probabilistic perspective. Language, 86(1), 1-42. https://doi.org/10.1353/lan.0.0197
  8. Chodroff, E., & Cole, J. (2018, September). Information structure, affect, and prenuclear prominence in American English. Proceedings of the Interspeech 2018 (pp. 1848-1852). Hyderabad, India.
  9. Cole, J., Hualde, J. I., Smith, C. L., Eager, C., Mahrt, T., & de Souza, R. N. (2019). Sound, structure and meaning: The bases of prominence ratings in English, French and Spanish. Journal of Phonetics, 75, 113-147. https://doi.org/10.1016/j.wocn.2019.05.002
  10. Cole, J., Kim, H., Choi, H., & Hasegawa-Johnson, M. (2007). Prosodic effects on acoustic cues to stop voicing and place of articulation: Evidence from radio news speech. Journal of Phonetics, 35(2), 180-209. https://doi.org/10.1016/j.wocn.2006.03.004
  11. Cole, J., Mo, Y., & Hasegawa-Johnson, M. (2010). Signal-based and expectation-based factors in the perception of prosodic prominence. Laboratory Phonology, 1(2), 425-452. https://doi.org/10.1515/labphon.2010.022
  12. Cole, J., & Shattuck-Hufnagel, S. (2016). New methods for prosodic transcription: Capturing variability as a source of information. Laboratory Phonology, 7(1), 8.
  13. Fahey, R. P., & Diehl, R. L. (1996). The missing fundamental in vowel height perception. Perception & Psychophysics, 58(5), 725-733. https://doi.org/10.3758/BF03213105
  14. Heffner, R. M. S. (1937). Notes on the length of vowels. American Speech, 12(2), 128-134. https://doi.org/10.2307/452621
  15. Hirschberg, J. (1993). Pitch accent in context predicting intonational prominence from text. Artificial Intelligence, 63(1-2), 305-340. https://doi.org/10.1016/0004-3702(93)90020-C
  16. House, A. S. (1961). On vowel duration in English. The Journal of the Acoustical Society of America, 33(9), 1174-1178. https://doi.org/10.1121/1.1908941
  17. House, A. S., & Fairbanks, G. (1953). The influence of consonant environment upon the secondary acoustical characteristics of vowels. Journal of the Acoustical Society of America, 25, 105-113. https://doi.org/10.1121/1.1906982
  18. Im, S., Cole, J., & Baumann, S. (2023). Standing out in context: Prominence in the production and perception of public speech, Laboratory Phonology, 14(1).
  19. Kingston, J. (1992). The phonetics and phonology of perceptually motivated articulatory covariation. Language and Speech, 35(1-2), 99-113. https://doi.org/10.1177/002383099203500209
  20. Kochanski, G., Grabe, E., Coleman, J., & Rosner, B. (2005). Loudness predicts prominence: Fundamental frequency lends little. The Journal of the Acoustical Society of America, 118, 1038-1054. https://doi.org/10.1121/1.1923349
  21. Lehiste, I. (1970). Suprasegmentals. Cambridge: MIT Press.
  22. Lehiste, I., & Peterson, G. E. (1959). Vowel amplitude and phonemic stress in American English. Journal of the Acoustical Society of America, 31, 428-435. https://doi.org/10.1121/1.1907729
  23. Lehiste, I., & Peterson, G. E. (1961). Some basic considerations in the analysis of intonation. Journal of the Acoustical Society of America, 33, 419-425. https://doi.org/10.1121/1.1908681
  24. Lenth, R. V. (2016). Least-squares means: The R package lsmeans. Journal of Statistical Software, 69(1), 1-33. https://doi.org/10.18637/jss.v069.i01
  25. Mahrt, T. (2013). Language markup and experimental design software [Computer software]. Retrieved from www.timmahrt.com/lmeds.html
  26. Peterson, G. E., & Barney, H. L. (1952). Control methods used in a study of the vowels. Journal of the Acoustical Society of America, 24, 175-184. https://doi.org/10.1121/1.1906875
  27. Peterson, G. E., & Lehiste, I. (1960). Duration of syllable nuclei in English. Journal of the Acoustical Society of America, 32, 693-703. https://doi.org/10.1121/1.1908183
  28. Pierrehumbert, J., & Hirschberg, J. (1990). The meaning of intonational contours in the interpretation of discourse. In P. R. Cohen, J. Morgan, & M. E. Pollack (Eds.), Intentions in communication (pp. 271-311). Cambridge, MA: MIT Press.
  29. R Core Team. (2022). R: A language and environment for statistical computing [Computer software]. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from www.R-project.org/
  30. Sluijter, A. M. C., & van Heuven, V. J. (1996). Spectral balance as an acoustic correlate of linguistic stress. The Journal of the Acoustical Society of America, 100(4), 2471-2485. https://doi.org/10.1121/1.417955
  31. Turk, A. E., & White, L. (1999). Structural influences on accentual lengthening in English. Journal of Phonetics, 27(2), 171-206. https://doi.org/10.1006/jpho.1999.0093
  32. Turnbull, R., Royer, A. J., Ito, K., & Speer, S. R. (2017). Prominence perception is dependent on phonology, semantics, and awareness of discourse. Language, Cognition and Neuroscience, 32(8), 1017-1033. https://doi.org/10.1080/23273798.2017.1279341
  33. Vogel, I., Bunnell, H. T., & Hoskins, S. (1995). The phonology and phonetics of the rhythm rule. In B. Connell, & A. Arvaniti (Eds.), Phonology and phonetic evidence (pp. 111-127). Cambridge, UK: Cambridge University Press.
  34. Watson, D. G., Arnold, J. E., & Tanenhaus, M. K. (2008). Tic Tac TOE: Effects of predictability and importance on acoustic prominence in language production. Cognition, 106(3), 1548-1557. https://doi.org/10.1016/j.cognition.2007.06.009
  35. Weide, R. (2005). The Carnegie Mellon University pronouncing dictionary. Retrieved from www.speech.cs.cmu.edu/cgi-bin/cmudict
  36. Whalen, D. H., Gick, B., Kumada, M., & Honda, K. (1999). Cricothyroid activity in high and low vowels: Exploring the automaticity of intrinsic F0. Journal of Phonetics, 27(2), 125-142. https://doi.org/10.1006/jpho.1999.0091
  37. Whalen, D. H., & Levitt, A. G. (1995). The universality of intrinsic F0 of vowels. Journal of Phonetics, 23(3), 349-366. https://doi.org/10.1016/S0095-4470(95)80165-0
  38. Xu, Y. (2013, August). ProsodyPro-A tool for large-scale systematic prosody analysis. Proceedings of the Tools and Resources for the Analysis of Speech Prosody (pp. 7-10). Aix-en-Provence, France.
  39. Young, L. H., Zajac, D. J., Mayo, R., & Hooper, C. R. (2001). Effects of vowel height and vocal intensity on anticipatory nasal airflow in individuals with normal speech. Journal of Speech, Language, and Hearing Research, 44(1), 52-60. https://doi.org/10.1044/1092-4388(2001/005)