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Abstract 

 
Medical image segmentation techniques based on convolution neural networks indulge in 
feature extraction triggering redundancy of parameters and unsatisfactory target localization, 
which outcomes in less accurate segmentation results to assist doctors in diagnosis. In this 
paper, we propose a multi-level semantic-rich encoding-decoding network, which consists of 
a Pooling-Conv-Former (PCFormer) module and a Cbam-Dilated-Transformer (CDT) 
module. In the PCFormer module, it is used to tackle the issue of parameter explosion in the 
conservative transformer and to compensate for the feature loss in the down-sampling 
process. In the CDT module, the Cbam attention module is adopted to highlight the feature 
regions by blending the intersection of attention mechanisms implicitly, and the Dilated 
convolution-Concat (DCC) module is designed as a parallel concatenation of multiple atrous 
convolution blocks to display the expanded perceptual field explicitly. In addition, Multi-
Head Attention-DwConv-Transformer (MDTransformer) module is utilized to evidently 
distinguish the target region from the background region. Extensive experiments on medical 
image segmentation from Glas, SIIM-ACR, ISIC and LGG demonstrated that our proposed 
network outperforms existing advanced methods in terms of both objective evaluation and 
subjective visual performance. 
 
 
Keywords: Transformer, Attention mechanism, Semantic enriched, Medical image 
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1. Introduction 

Medical image segmentation is a key step in medical image processing and analysis, which 
is also a core component of other advanced medical image analysis and interpretation 
systems. Segmentation of medical images provides the basis and prerequisites for target 
separation, feature extraction and quantitative measurement of parameters, making higher-
level medical image understanding and diagnosis possible. Medical image segmentation has 
a wide range of applications and research values in medical research, clinical diagnosis, 
pathological analysis, surgical planning, image information processing, computer-aided 
surgery and other medical research and practice fields. Deep learning-based medical image 
segmentation networks can greatly assist doctors in medical image segmentation [1-5]. 

Traditional manual feature extraction methods are usually based on features such as 
grayscale values, shapes and textures in the image. However, these features are designed 
manually using expert knowledge to achieve automatic segmentation of the target region. 
Manual methods frequently require a large amount of prior knowledge to extract manual 
features for segmentation, which are valid for segmentation tasks on specific datasets and the 
segmentation performance is not stable. Fortunately, deep learning-based segmentation 
methods use the idea of pixel classification, which can automatically extract the semantic 
information and learn the representation of the data, effectively overcoming the limitations 
of traditional manual feature segmentation. 

The previous medical image segmentation networks are convolution neural networks, which 
use repeatedly stacked convolution operations for monotonic down sampling. Nevertheless, the 
inconsistent contextual information leads to coarser segmentation results. To solve this problem, U- 
shape networks with context-skip connections have been proposed and are constantly being changed and 
developed. For instance, U-Net [6] is the basis of U-shape networks, which enables some 
improvement in segmentation accuracy. Attention U-Net [7] achieves a groundbreaking update to 
U-shape’s structure, which combines the attention layer and U-shape networks. U-Net ++ [8] 
integrates different levels of features and uses a flexible network structure with deeply supervised 
U-shape networks, and ET-Net [9] embeds edge-attentive U-shape networks. However, these 
networks are deficient in learning local information and global feature information. In many cases, 
these networks cannot correctly distinguish between background and target regions, lacking the 
analysis of local pixel information extraction. 

The U-shaped structure is difficult to learn explicit global and remote semantic 
information interactions in a primordial CNN approach due to the inherent limitations of 
convolution operations [10]. To overcome such limitations, existing studies have suggested a 
self-attention mechanism based on CNN features [11, 12]. The transformer is powerful in 
modeling global contexts [10]. However, the primitive transformer approach also suffers 
from feature loss. As a result, approaches based on CNN architectures combined with 
transformer modules flourished. For example, Bello et al. [13] used a self-attention 
mechanism to augment convolution operators by connecting convolution feature mappings 
that emphasize localization with self-attention feature mappings that are capable of modeling 
the global. DETR [14] uses a conventional CNN skeleton network to learn a two-
dimensional representation of the input image, where both the encoder and decoder are 
composed of a transformer. Later researchers started to combine transformer and U-shape 
networks. Swin-UNet [15] is a U-shaped medical image segmentation network based on a 
pristine transformer architecture, which feeds tokenized image blocks through jump 
connections into a transformer-based En-Decoder architecture for local and global semantic 
feature learning. Nevertheless, the original transformer approach has the problem of feature 
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loss. ViT [16] can process image blocks or CNN outputs directly through a self-attention 
mechanism just like the transformer. In addition, Ramachandran et al. [17] gave a local self-
attention module that can completely replace the convolution in the ResNet architecture. 
However, these designs ignore the rich context between neighboring keys. A novel 
transformer-style module called CoTNet has emerged, which makes full use of the contextual 
information between input keys to guide the learning of dynamic attention matrices [18]. The 
arrival of the transformer continues to improve the segmentation accuracy of images, but it 
makes network deployment difficult because of the enormous parameters it uses in the 
network. making the required parameters for the network not easy for model deployment. 

In this paper, a multi-level semantic enriched neural network approach for medical image 
segmentation is proposed. To improve the differentiation of target and background regions, as 
well as to optimize the learning and extraction of global and local feature information, the 
CDT module is used for feature enhancement in the decoder. In the CDT module, the Cbam 
attention module is first used, which uses its unique hybrid attention mechanism to weigh the 
effective features while suppressing the invalid features or noise. The DCC module uses its 
dilated convolution layers to increase the perceptual field and thus obtain more semantic 
information, optimizing the learning ability of local and global features. Finally, the 
MDTransformer module is adopted to solve the problem of distinguishing the background 
from the target area. In order to ameliorate the problem of a large number of parameters, we 
use Pooling-Conv-Former (PCFormer) module in the process of down sampling feature 
extraction. PCFormer module adopts pooling as the token mixer structure in the transformer 
and thus significantly reduces the computation of parameters. The main contributions of this 
work are as follows: 

(1) We present the PCFormer module as the encoder of the network to avoid the 
parameter explosion caused by the traditional transformer in the process of down sampling. 

(2) We design the CDT module as the decoder of the network. In order to optimize the 
network for the inadequacy of global and local feature region extraction, the Cbam attention 
module is utilized to weigh the target region, and the DCC module is designed to increase 
the perceptual field. In addition, the MDTransformer module is employed to distinctly 
distinguish the target region from the background region. 

(3) On four medical image segmentation benchmark datasets, including the ISIC, Glas, 
SIIM-ACR and LGG datasets, our method achieves state-of-the-art performance in both 
subjective segmentation results and objective evaluation metrics. 

2. Related work 

2.1 Medical image segmentation 
With the manipulation of deep learning in clinical medical image segmentation, numerous 
segmentation networks for medical images have flourished. In the field of retinal vessel 
segmentation [19], Fu et al. [20] introduced conditional random fields into convolution neural 
networks to optimize segmentation results with vessel segmentation and put forward a 
network that was based on U-Net improved retinal vessel segmentation method. Gu et al. [21] 
derived a U-shaped network through an experiment that has residual structure and dilated 
convolution and improved segmentation results on vessel segmentation. Li et al. [22] 
adopted the end-to-end structure of 3D output to 2D giving an image projection network 
(IPN) for effective feature selection and dimensionality reduction for vessel segmentation. In 
the field of liver tumor segmentation, Liu et al. [23] proposed a liver tumor segmentation 
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method that is based on deep Unet and graph-cut abdominal CT sequences. Li and Tso et al. 
[24] suggested a bottleneck supervised Unet model, which is segmented by making full use of 
the information between the layers of the network. Additionally, Schlempr et al. applied the 
A-unet model to incorporate attention mechanisms into the Unet segmentation framework, 
which can suppress problems such as irrelevant features and segmentation inaccuracies, and 
difficult detection of tiny tumors. Many other fields, such as brain tumors, heart tumors, etc., 
have developed a large number of appealing segmentation networks, which can successfully 
assist doctors in clinical diagnosis. 

2.2 Medical image segmentation based on encoder-decoder architecture 
The encoder-decoder architecture has been greatly treasured and largely developed in medical 
image segmentation. Ronneberger et al. designed the first deep learning model U-Net for 
biomedical image segmentation based on FCN, which has the satisfactory performance of U-
Net on medical images. Consequently, many researchers have given various improvements 
that are based on the encoder-decoder structure. Nabil et al. [25] applied a variant of U-Net 
on a multimodal medical image segmentation task after optimizing the encoder of U-Net, 
which achieved excellent performance. The authors of D-Net [26] proposed a multiscale 
information fusion module that uses parallel convolution layers with different expansion rates 
to better capture information about retinal vessels of different sizes. Chen et al. [27] presented 
a dual-stream architecture that contains a scale-context-selected attention module to enhance 
multiscale processing. Zhang et al. [28] introduced a boundary-enhanced structure to 
combine spatial information through dilated convolution. Kushnure et al. [29] proposed a 
multi-scale approach to capture broader and deeper contextual features. The authors of BA-
Net [30] introduce a jump connection from the boundary decoder to the segmentation 
decoder and define a consistency loss to drive both decoders to produce the same result. In 
addition, the CPF-Net [31] is used by combining two pyramid modules that incorporate global 
and multi-scale contextual information. These networks are based on the encoder-decoder, 
with modular innovations and structural adjustments that allow a breakthrough in the 
extraction of semantic information. 

2.3 Transformer-based medical image segmentation 
The self-attention mechanism in a transformer is able to globally compute pairwise 
relationships between patches, thus enabling feature interaction over a longer range. Beyer 
et al. [16] used a primitive transformer framework for vision tasks, treating images as a 
collection of spatial patches. The same self-attention mechanism is combined in DGFAU-Net 
[32]. In medical image semantic segmentation, transformer combinatorial architectures can 
be divided into two categories. One mainly utilizes self-attention mechanisms to 
complement convolution neural networks [33]. The other exploits primordial transformers to 
build encoder-decoder architectures to capture the depth of information [34]. Two types of 
transformers are combined in the network mentioned in this paper, a pristine transformer is 
employed to build the encoder with pooling instead of the self-attention mechanism, while a 
transformer with the self-attention mechanism is adopted in the decoder. In fact, the self-
attention mechanism in the transformer is permutation equivalent [35], which omits the order of 
blocks in the input sequence. Nevertheless, since medical image segmentation results are 
highly correlated with location, the nature of substitution equivalence may be detrimental to 
medical image segmentation. Previous work usually used absolute position encoding (APE) 
[35] or relative position encoding (RPE) [36] to complement the position information. 
However, APE requires a pre-given fixed number of patches and therefore cannot be 
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generalized to different image sizes. RPE ignores absolute position information, which is 
precisely important information for a pixel-level task like medical image segmentation. 

3. Methodology 
In this section, the proposed model is described in detail. The proposed method adopts a 
four-layer down sampling architecture, using the PCFormer module as the encoder module 
for each layer. In the decoder construction, the CDT module is utilized as a semantic 
enrichment module. Specifically, the entire network is introduced in Section 3.1. The 
encoder structure based on the PCFormer module is presented in Section 3.2. The CDT 
module is designed in Section 3.3, and the loss function is described in Section 3.4. 

 
Fig. 1. The architecture of the MLSE-Net 

3.1 Overview 
Fig. 1. illustrates the pipeline of the proposed method in this paper. The encoder process is divided 
into four layers in steps. In particular, the input image in  is processed by the PCFormer module in 
the first layer to obtain the output image 1 . 1  is used as the input image in the second layer and 
is processed to obtain the output image 2 . 2  is adopted as the input image of the third layer, and 
the output image 3  is derived after processing. 3  is selected as the input image of the fourth layer, 
and the output image 4  is obtained after processing. In the decoder process, the feature 
enhancement step before feature fusion is first performed by the CDT module, and 1  is processed 
by the CDT module to obtain the feature enhancement image 1 . 2 is subjected to the CDT 
module to obtain the feature enhancement image 2 . 3  is applied to the CDT module to obtain 
the feature-enhanced image 3 . 4  is concatenated with 3  in the channel dimension, and then 
the image channel dimension is changed by the convolution operation to get 1 . 1  is 
concatenated with 2  in the channel dimension, and then the image channel dimension is modified 
by the convolution operation to get 2 . After concatenating 2  with 1  in the channel dimension, 
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R elu 

the image channel dimension size is adjusted using the convolution operation to obtain 3 . Finally, 
the binary map   is generated by bilinear interpolation and convolution operation. 

3.2 Coding structure based on PCFormer module 
The transformer is prone to parameter explosion in the network due to using self-attention as 
the token mixer module, which makes the model difficult to deploy [35]. Fortunately, the 
computational complexity of pooling is linear in sequence length and learnable parameters are 
unnecessary, which can compensate for the shortcomings of the parameter explosion. As 
shown in Fig. 2 (a), the PCFormer module contains a convolution layer, a feature capture 
layer composed of two pooling transformers (PT), and a closing convolution layer (CCL). 
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Fig. 2 (a) shows the specific structure of the PCFormer module. The feature map to be 
down-sampled is processed by the first convolution layer and then feature capture is 
performed by two PT layers. The first PT layer focuses on the overall structure of the feature 
image for generalized feature extraction. The feature map obtained by using the output of 
the first convolution layer is complemented with the feature map obtained after the pooling 
operation in the first PT layer to prevent the feature loss caused by pooling. The overall can 
be expressed as follows: 

3 3
in 1Convolution

Norm
1 1 1 2Pooling

Norm
2 2 3ChannelMLP

PT

X δ

δ δ δ

δ δ δ

 
  

  

                         (1) 
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Where 1δ  is the result obtained after convolutional layer processing, Xin is the image to 
be processed in each layer input, 2δ  is the result obtained by adding the feature map 
obtained by 1δ  after the norm and pooling operations in the first PT layer with 1δ , and 3δ  is 
the feature map obtained in the first PT layer. Where channel MLP can be expressed as 
follows: 

1 1 Convolution 1 1 
GELU Convolutionin outψ ψ                 (2) 

inψ is the input feature map and outψ  is the output feature map. The featured image 
processed by the first PT layer has more weight on the outer contour of the feature region than 
the other regions, so the trailing PT1 layer can focus on the local detail regions and complete 
the detail feature capture. Finally, the closing convolution layer (CCL) performs information 
integration as well as gives linear structure to the feature map. The overall can be expressed 
as follows: 

2
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                              (3) 

Where 3δ  is the resultant feature map generated by the PT1 layer, 4δ  is the feature map 
generated by the Norm and Pooling layers of the PT2 layer, 5δ  is the feature map generated 
by the PT2 layer, and 6δ  is the feature map finally generated by the PCFormer module. 

3.3 Decoding structure based on CDT module 
In the traditional U-Net model, the directness skip connection is unable to correctly 
distinguish the target and background regions due to insufficient feature capture ability. For 
suppressing sample noise, U-Net fails to make effective initiatives. The CDT module in the 
decoder structure can improve the differentiation of target and background regions, suppress 
sample noise, as well as optimize the learning and extraction ability of global and local 
feature information. The CDT module contains a Cbam attention module, a DCC module, 
and an MDTransformer module. 

3.3.1 Cbam attention module 
The Cbam attention module is a simple and effective attention module for convolutional 
neural networks (CNNs). Given an arbitrary intermediate feature map in a CNNs, the Cbam 
attention module injects the attention mapping along two independent dimensions of the 
channel and space of the feature map. Then, it multiplies the attention by the input feature 
map to perform adaptive feature refinement on the input feature map. Due to the Cbam 
attention module is an end-to-end generic module, it can be seamlessly integrated into any 
CNNs architecture and can be trained end-to-end with basic CNNs. The structure of channel 
attention and spatial attention in the Cbam attention module is shown in Fig. 2 (b). Given 
an intermediate feature map C H WF × ×∈  as input, the operation process of the Cbam 
attention module is generally divided into two stages: Firstly, MaxPooling and AvgPooling 
operations are performed on the input by channel, and the two one- dimensional vectors after 
pooling are sent to the fully connected layer operation and then summed to generate one-
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dimensional channel attention 1 1C
CM × ×∈ , and then the channel attention is multiplied with 

the input by element to obtain the channel attention-adjusted feature map F1; Secondly, F1 is 
subjected to global MaxPooling and AvgPooling operations by space, and the two two-
dimensional vectors generated by pooling are concated together and subjected to convolution 
operations to finally generate two-dimensional spatial attention 1 1C

SM × ×∈ , and then the 
spatial attention is multiplication dot with F1. The specific operational flow is shown in Fig. 
2 (b), and the overall attention generation process of the Cbam attention module can be 
described as follows:  

out ( ( ) ) ( )a a aF S C F F C F F                   (4) 
Where Fout denotes the output feature map of the Cbam attention module and   denotes 

the corresponding element multiplication. F is the input feature map. S a (·) is the Spacial 
attention operation. C a (·) is a Channel attention operation. Before the multiplication 
operation, channel attention and spatial attention need to be broadcasted in spatial dimension 
and channel dimension, respectively. 

3.3.2 DCC module 
The DCC module is composed of four dilated convolution blocks with expansion 
coefficients of 1, 2, 5, 7 respectively. Each dilated module consists of one dilated 
convolution, one BN and one RelU layer. The convolution kernel size is set to expand the 
field of perception for the expansion coefficients of 2, 5, 7, and the kernel size of 1 × 1 is set 
to supplement the expansion coefficient of 1 to suppress the loss of information of important 
feature regions by the expansion convolution. Finally, the output feature maps of the four 
expansion convolution modules are stitched together. In the field of image segmentation, 
such as FCN [37], the convolution operation is done before the pooling operation to reduce 
the image size and increase the image field of perception at the same time, but it will cause 
the lack of accuracy of the image when up sampling the reduced image size. Dilated 
convolution increases the receptive field of the neural network without decreasing the image 
size so that each convolution output contains a larger range of information. The different 
perceptual fields obtained with four 3 × 3 ordinary convolutions and four 3 × 3 dilated 
convolutions, respectively, are clearly shown in Fig. 3. Assuming that the size of the 
convolution kernel is K × K and the dilation rates are d, its equivalent convolution kernel 
size K is calculated by the following formula: 

( 1) ( 1)K K K d             (5) 
After the processing of four inflated convolution blocks, the output feature map is 

finally stitched in the channel dimension, which can be expressed in general as 
1 2 5 7

out 1 1 3 3 3 3 3 3[ ( ) ( ) ( ) ( )]in in in inX X X X Xϕ ϕ ϕ ϕ             (6) 
Where Xout is the output result, Xin is the input feature map, ⊗  is the concat operation, 

and φ1
1 × 1 (·) is a dilated convolution block with an expansion factor of 1 and a convolution 

kernel size of 1 × 1. φ2
3 × 3 (·) is a dilated convolution block with an expansion factor of 2 and 

a convolution kernel size of 3 × 3. φ5
3 × 3 (·) is a dilated convolution block with an expansion 

factor of 5 and a convolution kernel size of 3 × 3. φ7
3 × 3 (·) is a dilated convolution block with 

an expansion factor of 7 and a convolution kernel size of 3 × 3. 

3.3.3 MDTransformer module 
The MFTransformer is composed of an MDTransformer-Attention block (MDTA block) and 
an MDTransformer-MLP block (MDTM block). The MDTA block consists of a LayerNorm 



2466                                                                                                               Gai et al.: MLSE-Net: Multi-level Semantic Enriched  
Network for Medical Image Segmentation 

     
(a)                                                 (b) 

Fig. 3. the different perceptual fields of the two convolutions without changing the image size, (a) the 
perceptual field of the normal convolution, and (b) the perceptual field of the dilated convolution. 

layer, an Average Pooling layer, and a Multi-Head Attention layer. The MDTM block is 
composed of a LayerNorm layer, a first linear processing layer, a DWConv layer, a GELU 
layer, and a tail linear processing layer. MDTransformer module greatly reduces the use of 
parameters while enhancing the feature capture capability of the CDT module. The input 
feature map is processed by Flatten linear expansion to obtain a linear feature vector of size 
(H × W) ×C. The vector is input to the MDTA block for feature capture processing, and then 
fed to MDTM block for processing, and the output linear feature vector is reshaped to get the 
feature map of size H × W ×C. In summary, it can be described as: 

out in in in inreshape(MDTA( ) MDTM(MDTA( ) ))X X X X X        (7) 

Where Xout is the output of the MDTransformer module. reshape (·) is the reorganization 
function. MDTA (·) is the MDTA block operation. Xin is the input feature map. MDTM (·) is 
the MDTM block operation. 

MDTA block. Multi-Head Attention in the MDTA block enhances the feature capture 
capability for the CDT module and assists the CDT module in feature enhancement. Unlike 
Vit’s [16] Multi-Head Attention, the Multi-Head Attention in this paper reduces the 
computational effort to a great extent. If the input feature map of H × W ×C is given, the 
complexity of Vit’s Multi-Head Attention is: 

2 23 H W CΩ          (8) 
Where Ω denotes the parameter complexity.  
If the input feature map of H × W ×C is given, the complexity of this MDTA block is: 

22 H W P CΩ                                 (9) 
Where P is the linear pool size. The final formula for the self-attention calculation is: 

head

Attention( , , ) Softmax
TQKQ K V

d

 
     

            (10) 

Where Attention (Q, K, V) is the self-attentive mechanism. Q, K, and V are the matrices 
of multiple linear vectors combined from the deformation of the original input feature map. 
The results obtained from each set of Qi, Ki, and Vi vector operations are stitched together to 
obtain dhead. KT is the transpose matrix of the K. Softmax (·) is an activation function. 
But before K, V is passed in the input size changes from H × W ×C to a fixed size of P2 × C, 
where P is the linear pool size. This greatly reduces computational complexity and memory 
consumption. Therefore, larger feature maps can be processed with limited resources. 

MDTM block. DW convolution is used in the MDTM block to remove the position 
coding and reduce the required parameters of the network. DW convolution can learn the 
contour information of the feature map based on the outer circle of the feature map. In other 
words, DW can learn some absolute position information to model the position information. 
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MDTM block can be represented as: 
out inDrop(Linear(GELU(DWConv(Linear(LayerNorm( ))))))X X      (11) 

Where Xout is the output feature map of the MDTM block. Drop (·) is a Dropout 
operation. Linear (·) is a linear activation function. GELU (·) is an activation function that 
incorporates the idea of stochastic regularity. DWConv (·) is a DWConv operation. 
LayerNorm (·) is a normalized processing layer. 

3.4 Hybrid loss 
Different loss functions have different characteristics in different aspects. To take advantage 
of the different loss functions in backpropagation, the method in this paper designs a Hybrid 
loss, which is composed of CrossEntropy loss and Dice loss. Setting Dice loss to L1, and 
CrossEntropy loss to L2, the Hybrid loss can be expressed as: 

1 2L L Lα β           (12) 

3.4.1 Dice loss 
The Dice loss function, which essentially measures the overlap of two samples, addresses the 
case of category imbalance. Dice loss can be expressed as: 

2 2
1 1

1

1 1 1 1

2
1

N c c c
i ii c

N c N cc c
i ii c i c

g s
L

g s
 

   

 


 
   

    (13) 

Where L1 refers to Dice loss, i denotes each pixel point, c denotes classification, gi
c 

denotes whether the classification is correct, and si
c denotes the probability of being 

classified into a certain class. 

3.4.2 CrossEntropy loss 
CrossEntropy loss is able to measure subtle differences. It is calculated as follows: 

2
1 1

( ) log( ( ))
m n

ij ij
i j

L P y Q y
 

      (14) 

Where L2 refers to the CrossEntropy loss function, n is the number of categories to be 
classified, P(yij) represents the true labels corresponding to the yi categories, i.e., the 
predicted probability of the n categories, and Q(yij) represents the predicted value of the yi 
categories. 

4. Experiment 

4.1 Experimental Settings 
Dataset To demonstrate the generalization of the network, the experimental design is based 
on four different categories of datasets, including the Glas dataset, SIIM-ACR dataset, ISIC 
dataset, and LGG dataset. 
1) Glas dataset: The Glas dataset is a publicly available dataset from the MICCAI 2015 
Glandular Segmentation Challenge and consists of 165 images from 16 hematoxylins and 
eosin-stained slides of colorectal cancer tissue sections. The original images are set to 775 × 
522. The dataset is divided into a training set and a test set, in which 100 images are used as 
the training set, and 65 images are applied as the test set. 
2) SIIM-ACR dataset: The SIIM-ACR dataset is a public dataset for the SIIM-ACR Lung 
Image Segmentation Kaggle competition hosted by the Society for Imaging Informatics in 
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Medicine (SIIM) 2019. After slicing and processing its 3D images, 101 chest radiographs are 
obtained for the experiments, 88 of which are used as the training set and 13 for the 
validation set. 
3) ISIC dataset: The ISIC dataset contains a total of 5423 images of skin lesion areas with 
different scale sizes, different shapes, and different colors, of which 3461 images are 
selected as the training set and 2002 images serve as the test set. 
4) LGG dataset: The LGG dataset contains 110 MR image slices of the brains with low-
grade gliomas, which are obtained from the Cancer Genome Atlas and the Cancer Imaging 
Archive. After processing the dataset, a total of 1311 images are collected for the 
experiments, of which 1049 images are randomly selected for training and 262 for testing. 
Implementation Details The experiments are conducted on Ubuntu 16. 04 LTS 64-bit 
operating system with 64GB RAM and NVIDIA Tesla K80 GPU. The initial learning rate is 
1e-4 using Adam optimizer, and the learning rate is adjusted using CosineAnnealingLR 
algorithm for each epoch completed during the training process. The variation interval of the 
learning rate is between (1e-4,1e-6). α  set to 0.3 and β set to 0.7. The batch size is set to 4, 
and the size of the training image is 256*256. The epochs of the four datasets LGG, SIIM-
ACR, ISIC, and Glas are set to 100 times during training. 
Evaluation metrics In order to evaluate the usefulness of the algorithm fairly, we analyze 
it from different perspectives and use different evaluation metrics including Dice, 
Intersection over Union (IoU), Weighted F-measure (wFm), Structure-based Metric (Sm), 
Enhanced-alignment Metric (Em) and Sensitive (Sen). Specifically, the Dice index focuses 
on the similarity information of pixel points inside the region and is used to measure the 
similarity between two samples. The IoU criteria calculates the similarity or overlap between 
two samples by the ratio of predicted borders to true borders. We use the wFm metric to 
assign different weights to the errors generated at different locations based on the adjacency 
information. The Sm metric is a reconciliation index, which can effectively reflect the 
structural similarity between two image collections. The Em index can effectively reflect the 
local pixel-matching information between two image collections. The Sen criteria indicates 
the proportion of all positive examples that are judged to be correct, and it measures the 
classifier’s ability to recognize positive examples. 

4.2 Comparison experiments 
To verify the effectiveness of the method in this paper, comparison experiments are 
conducted on four different types of datasets with Unet [6], NestedUNet [8], BiSeNetV1 [38], 
BiSeNetV2 [39], KiUnet [40], SSformer [41], TransUnet [10], Uctransnet [42], ScaleFormer 
[43]. The following are the results of the experiments with data sets respectively. 

4.2.1 SIIM-ACR Dataset 
Quantitative Evaluation: Unet, NestedUNet, BiSeNetV1, BiSeNetV2, KiUnet, SSformer, 
TransUnet, and the proposed method are utilized to segment the same test set, and the mean 
values of the five networks are calculated for the evaluation metrics Dice, IoU, wFm, Sm, Em, 
and Sen, respectively. The evaluation results are shown in Table 1. Comparing the experimental 
results, it can be seen that SSformer has the lowest Dic and IoU, indicating that the segmentation 
effect of the network has the largest gap compared with the original label. BiSeNetV1 and 
BiSeNetV2 outperform SSformer in terms of Dic and IoU, but the indexes are not as good as the 
proposed method. This is because the proposed network structure in the decoder part enhances 
the feature capture capability and develops the field of view perception, which results in higher 
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accuracy of segmentation. The wFm, Sm, and Em of Unet and NestedUNet achieve equal 
metrics, which indicates that the dense residual edges used in NestedUNet are less advantageous 
on lightweight datasets. In this paper, the proposed network advances the Sm to 95.9% while 
ensuring an insignificant improvement in wFm and Em, achieving a balance between the 
accuracy of local segmentation and overall structural segmentation. Consequently, the proposed 
method also has significant enhancement in meanDic, meanIoU, and meanSen. Combining the 
six evaluation results, the overall performance of the proposed method surpasses other methods. 
 

Table 1. The quantitative result on the SIIM-ACR dataset  
(Bold numbers indicate the best performance) 

Network module (SIIM-ACR) Dic IoU wFm Sm Em Sen 
Unet 0.971 0.945 0.976 0.957 0.985 0.970 

NestedUNet 0.973 0.949 0.976 0.957 0.985 0.978 
BiSeNetV1 0.963 0.931 0.968 0.948 0.981 0.961 
BiSeNetV2 0.972 0.947 0.976 0.957 0.985 0.978 

Kiunet 0.973 0.949 0.977 0.958 0.985 0.976 
SSformer 0.951 0.916 0.958 0.940 0.971 0.943 
Tranunet 0.969 0.943 0.973 0.955 0.984 0.974 

ScaleFormer 0.971 0.946 0.973 0.953 0.982 0.977 
Uctransnet 0.967 0.948 0.970 0.949 0.974 0.973 

MLSE-Net(Ours) 0.974 0.951 0.978 0.959 0.986 0.981 
 
Quality Evaluation: The segmentation results of all networks are shown in Fig. 4. On the one 
hand, the segmentation results of each network cannot effectively suppress the sample noise, as 
shown in the circled part of case1 in Fig. 4. In case 1, there has some misclassification 
phenomenon due to the inability to suppress the sample noise in the segmentation results, while 
there are relatively few cases of misclassification in this method. Meanwhile, TransUnet and 
BiSeNetV1 which use the attention module in the encoder part have more serious 
misclassification than Unet and SSformer, which proves that the attention module in the encoder 
cannot effectively suppress the sample noise in lightweight data sets. The significant reason why 
SSormer only produces smaller segmentation errors is that it designs the LE and SFA modules in 
the decoder part to effectively suppress the sample noise. The proposed method has an 
eminent decoder module and therefore the perfect segmentation results in this case1. On the 
other hand, in the segmentation results of each network, the left lung end is lost to different 
degrees as shown in the circled part in case2. Case2 has an obvious loss of the left lung end 
in the segmentation results of Transnet, SSormer and BiSeNetV1, while the segmentation 
results of NestedUNet and Kiunet are revised, which proves that in the lightweight datasets 
in encoder using the attention module cannot effectively suppress the sample noise. The 
PCFormer module that is proposed in this paper in encoder structure circumvents this 
structure very well. In general, the method in this paper can effectively solve the above two 
types of issues, and the segmentation results of this method are closer to the real results 
compared with other networks. 

4.2.2 Glas Dataset 
Quantitative Evaluation: As can be seen from Table 2, compared to Unet, the KiUnet 
network with a dual-network mechanism drops to 87.8% and 78.9% on Dic and IoU, 
respectively. Although the TransUnet and SSformer networks optimized the encoder and 
decoder structures, the scores on Dic and IoU were still lower than those of Unet. 
NestedUNet optimizes the feature fusion process so that its scores on Dic and IoU arrive to 
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Fig. 4. Quality results on the SIIM-ACR Dataset 

 
92.6% and 86.5%, respectively. The scores of the proposed method on Dic and IoU, after 
using the PCFormer module in the backbone and CDT module in a decoder, are increased to 
93.0% and 87.2%, respectively, which proves that the two modules proposed in this paper’s 
network have excellent improvement for segmentation accuracy. BiSeNetV1 and TransUnet 
are close in wFm, Sm, Em and Sen. From Table 2, we can see that TransUnet outperforms 
BiSeNetV1 in terms of the overall structure, and its Sm reaches 82.6%. This indicates that 
the transformer structure used in the encoder part of TransUnet is more excellent than the 
ARM module proposed in BiSeNetV1 in terms of the global structure of the segmentation. 
In addition, the proposed method achieves 85.3% in Sm since the CDT module used expands 

Table 2. The quantitative result on the Glas dataset (Bold numbers indicate the best performance) 
Network module (Glas) Dic IoU wFm Sm Em Sen 

Unet 0.919 0.852 0.908 0.830 0.914 0.935 
NestedUNet 0.926 0.865 0.920 0.843 0.919 0.937 
BiSeNetV1 0.915 0.845 0.908 0.821 0.907 0.924 
BiSeNetV2 0.897 0.816 0.884 0.798 0.886 0.910 

KiUnet 0.878 0.789 0.861 0.780 0.874 0.895 
SSformer 0.890 0.804 0.867 0.766 0.849 0.929 

TransUnet 0.917 0.849 0.907 0.826 0.905 0.930 
ScaleFormer 0.924 0.864 0.920 0.841 0.917 0.932 
Uctransnet 0.925 0.863 0.912 0.821 0.902 0.927 

MLSE-Net(Ours) 0.930 0.872 0.925 0.853 0.921 0.941 
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the perception field of the network segmentation in each layer. Combining all the metrics data, 
the proposed method has a positive effect on the medical image segmentation task. 

Quality Evaluation: The segmentation results of all networks are shown in Fig. 5. 
After comparison, it can be seen that each network has segmentation errors in different 
degrees, and the conflict between the local segmentation effect and the global segmentation 
effect is highlighted. In case1, BiSeNetV2 is less effective than BiSeNetV1 segmentation 
because BiSeNetV2 eliminates the fast-downsampling strategy, which reduces the range of 
sensory field acquisition and leads to a lack of overall segmentation accuracy. However, in 
case2 BiSeNetV1 is less effective than BiSeNetV2 segmentation due to the fact that the 
detailed branch used in BiSeNetV2 is more prominent in its ability to capture details. The 
same phenomenon is reflected in the segmented images of Unet and NestedUNet. 
NestedUNet, which uses the residual structure in the feature fusion process, outperforms 
Unet in the overall segmentation in case1, but its segmentation error in case2 is more 
prominent than that of Unet, due to the enhanced noise effect factor in the residual fusion 
process. Case1 shows that the global segmentation of TransUnet and SSformer outperforms 
the other networks, while in case2 SSformer shows more effective local segmentation than 
TransUnet, due to the enhanced local details of SSformer using LE and SFA modules. This 
shows that using transformer structure in an encoder structure can effectively help the 
network to perform global segmentation of images, while a good decoder module is more 

case1

case2

BiSeNetV1 SSformer  

BiSeNetV2 Unet NestedUNet

BiSeNetV1 SSformer  TransUnet 

NestedUNetUnetBiSeNetV2

 KiUnet  

 KiUnet  

TransUnet 

Proposed Ground Truth

Uctransnet

Uctransnet

ScaleFormer Ground TruthProposed

ScaleFormer

 
Fig. 5. Quality results on the Glas Dataset. The Glas dataset is a cell image set, and the main 

requirement is that the network has good boundary segmentation ability and environment differentiation 
effect. From the segmentation effect, MLSE-Net is better than other network models both in terms of 

environment differentiation effect and boundary segmentation ability. 
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important for local segmentation. The reason why this network can get the glorious 
segmentation results is in case1 and case2. It is because this network uses PCFormer the 
encoder part to enhance the feature capture ability and the CDT module in the decoder part 
to enhance the semantic details, which can effectively solve the conflict between the local 
segmentation effect and the global segmentation effect. 

4.2.3 ISIC Dataset 
Quantitative Evaluation: As can be seen from Table 3, for the U-Net network, 
NestedUNet’s scores on Dic and IoU did not change significantly, while KiUnet with a dual-
network mechanism decreased to 88.1% and 81.0% on Dic and IoU instead. The 
TransUnetnetwork combined with a transformer in the backbone decreased to 87.4% and 
79.9% for Dic and IoU, while SSformer with optimized decoder structure increased to 91.0% 
and 85.1% for Dic and IoU. In contrast, adding a transformer to the backbone weakens the 
overall segmentation accuracy of medical images to some extent, while using an effective 
feature enhancement module can effectively suppress this phenomenon. Among them, the 
PCFormer module and CDT module proposed in this paper enhance the scores of Dic and 
IoU to 91.5% and 85.8%, respectively. Combined with the analysis of the comprehensive 
indexes of Dic, IoU, wFm, Sm, and Em, the proposed method achieves the best score, which 
demonstrates that the proposed method is advanced both from the overall segmentation effect 
and from the local segmentation details. Sm and Sen have certain correlations in the case of 
data unification when one of them has a higher value, the other index will be affected to some 
extent. From Table 3, it can be seen that Unet, NestedUNet, and BiSeNetV1 have slightly 
higher Sen scores than the proposed method, which shows that the expanded convolution 
layer used in the CDT module incorrectly learns some information while expanding the 
perceptual field. Nevertheless, the proposed method is higher than the other networks in all 
other metrics, which verifies that the proposed method has a positive effect on the medical 
image segmentation task. 

Table 3. The quantitative result on the ISIC dataset (Bold numbers indicate the best performance) 
Network module (ISIC) Dic IoU wFm Sm Em Sen 

Unet 0.905 0.842 0.887 0.888 0.933 0.955 
NestedUNet 0.905 0.842 0.886 0.887 0.931 0.958 
BiSeNetV1 0.906 0.843 0.889 0.888 0.932 0.959 
BiSeNetV2 0.912 0.853 0.900 0.896 0.938 0.944 

KiUnet 0.881 0.810 0.856 0.867 0.913 0.944 
SSformer 0.910 0.851 0.899 0.895 0.936 0.941 

TransUnet 0.874 0.799 0.852 0.861 0.909 0.928 
ScaleFormer 0.903 0.843 0.885 0.883 0.929 0.947 
Uctransnet 0.901 0.842 0.890 0.873 0.925 0.949 

MLSE-Net(Ours) 0.915 0.858 0.902 0.898 0.940 0.954 
 

Quality Evaluation: Fig. 6 shows the visualization results of the other methods 
compared with the proposed method. As shown by the comparison results, BiSeNetV1, 
BiSeNetV2, KiUnet, SSformer, TransUnet, Unet, and NestedUNet networks in case1 display 
significant bias in segmenting the target lesions and cannot effectively suppress the sample 
noise to ensure the certainty of the segmentation results. In case2, KiUnet and TransUnet 
cannot accurately locate the feature region, resulting in serious segmentation errors. In 
addition, NestedUNet can identify the target region, but cannot guarantee the integrity of the 
segmentation results resulting in large overall segmentation errors. Unet refines the issue of 
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target region segmentation error that exists in NestedUNet, but the problem of inability to 
effectively suppress sample noise with local segmentation error appears. BiSeNetV1 and 
BiSeNetV2 address the problem of local segmentation error, but still had the problem of not 
being able to suppress sample noise. The Segformer used by SSformer effectively 
suppressed sample noise, but the problem of local segmentation error appeared. In 
comparison, the proposed method can precisely predict the shape and location of lesions and 
tackle the issue of local segmentation error. Besides, the method in this paper is closer to the 
manual segmentation effect of doctors and has significant advantages in segmentation 
completeness and accuracy. 

Uctransnet

ScaleFormer

ScaleFormer

case1

case2

 BiSeNetV1 KiUnet SSformer  TransUnet

NestedUNetUnet BiSeNetV2 

 BiSeNetV1 KiUnet SSformer  

NestedUNetUnet BiSeNetV2 

Proposed

Ground TruthProposed

Uctransnet

Ground Truth

TransUnet

 
Fig. 6. Quality results on the ISIC Dataset. The ISIC dataset is highly valued for the function of 
suppressing noise interference, and non-lesion interference regions appear around the skin lesion 

regions. Comparing with other network segmentation effects MLSE-Net can effectively suppress the 
noise region and get the segmented image correctly. 

4.2.4 LGG Dataset 
Quantitative Evaluation: From Table 4, we can see that for the Unet network, 
NestedUNet’s Dic and IoU scores are slightly reduced after adopting dense residual edges in 
the backbone, which is due to the fact that the network adopts the residual structure to fuse 
the underlying semantic information and the high-level semantic information, which makes 
it difficult for the network to deal with the errors caused by the sample noise in the high- 
Level semantic information and cannot correctly distinguish the background information 
from the target region. BiSeNetV1, SSformer, TransUnet compared to Unet in both Dic and 
IoU scores decreased by 2% and Sm score decreased by 1%, which indicates that the use of 
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Table 4. The quantitative result on the LGG dataset (Bold numbers indicate the best performance) 

Network module (LGG) Dic IoU wFm Sm Em Sen 

Unet 0.924 0.865 0.924 0.939 0.984 0.941 
NestedUNet 0.923 0.863 0.918 0.938 0.983 0.957 
BiSeNetV1 0.901 0.828 0.903 0.922 0.977 0.908 
BiSeNetV2 0.918 0.855 0.921 0.936 0.985 0.929 

KiUnet 0.902 0.832 0.904 0.924 0.975 0.911 
SSformer 0.905 0.836 0.910 0.926 0.975 0.906 
TransUnet 0.904 0.835 0.909 0.926 0.974 0.903 

ScaleFormer 0.921 0.869 0.923 0.938 0.972 0.951 
Uctransnet 0.927 0.871 0.929 0.940 0.977 0.940 

MLSE-Net(Ours) 0.930 0.874 0.934 0.944 0.987 0.942 

the attention-based transformer structure in the down sampling process leads to an inferior 
overall segmentation effect compared to Unet. The reason why the method in this paper can 
enhance the scores of Dic, IoU, and Sm to 93.0%, 87.4%, and 94.4% is that the Pooling 
operation is used instead of the attention structure for down sampling. This method of 
deleting the unnecessary attention mechanism in the down sampling process and instead 
using the attention mechanism in the feature fusion process can supplement the local 
semantic information while enhancing the overall segmentation effect of the network. 
Therefore, the proposed method has a significant improvement in the local comprehensive 
evaluation index. However, the score of NestedUNet on Sen is higher than the proposed 
method on Sen, which is due to the higher classification ability of its adopted residual structure, 
but the proposed method is the highest in all other indexes, which integrally reflects the 
robustness of our method. 
Quality Evaluation: Fig. 7 shows the visualization comparison results of the other methods 
in this paper. As seen from the comparison results, in case1, Unet, NestedUNet, BiSeNetV1, 
KiUnet, SSformer, and TransUnet exhibit significant deviations in segmenting the target 
lesions due to sampling noise interference, and the overall segmentation effect has a large 
gap with the labels. BiSeNetV2 adopts the Bilateral Guided Aggregation Layer to enhance 
the interconnection of feature regions, so its segmentation effect is outstanding, but the 
segmentation effect at the target lesion boundary is poor, and it cannot distinguish the lesion 
boundary and background pixels well. In this paper, the proposed method adopts a non-
attention transformer structure as an encoder and cooperates with the CDT module to fuse 
multi-level semantic information, which enriches local semantic information while 
suppressing sample noise. In comparison, the method in this paper can exactly predict the 
shape and location of lesions, effectively raise the segmentation of lesion boundaries, and 
effectively suppress sample noise. In summary, the method has significant advantages in 
segmentation completeness and accuracy. 

4.3 Ablations Experiments and Analysis 

4.3.1 Effectiveness of Hybrid loss 
Different combinations are designed for the hybrid loss function in the experiments. 
Specifically, to further analyze the impact of the use of mixed loss on the experiments. 
Different combinations of CELoss and DiceLoss used in the experiments are performed, 
which included using CELoss without DiceLoss, using DiceLoss without CELoss, and using 
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both CELoss and DiceLoss. The experimental results are shown in Table 5. 
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Fig. 7. Quality results on the LGG Dataset 

Table 5. Result of the effectiveness of Hybrid loss (Bold numbers indicate the best performance) 
Loss Dic IoU Sm Em 

CELoss DiceLoss Glas ISIC LGG Glas ISIC LGG Glas ISIC LGG Glas ISIC LGG 
√  0.863 0.910 0.926 0.762 0.850 0.867 0.746 0.894 0.942 0.850 0.936 0.987 
 √ 0.259 0.804 0.914 0.152 0.701 0.849 0.247 0.795 0.934 0.382 0.852 0.982 
√ √ 0.930 0.915 0.930 0.872 0.858 0.874 0.853 0.898 0.944 0.921 0.940 0.987 

 
From Table 5, it can be found that the method using CELoss alone has higher Dic, IoU, 

Sm, and Em scores on all three data sets than the method using DiceLoss alone. When the 
experiments are conducted on the Glas dataset, the DiceLoss-only approach produced large 
biases in the experiments with low scores on all four metrics. This is because DiceLoss 
essentially measures the overlap of two samples, which is more generalized than CELoss, so 
it has poor backpropagation on Glas datasets that require abundantly detailed semantic 
information. The analysis of the data shows that the back-propagation process of the loss 
function has a vital role in the segmentation task. As the number of iterations increases, the 
learnable parameters of the network are continuously updated, which has a positive effect on 
the segmentation results. For this paper, the proposed method achieves the best results for 
medical image segmentation when two loss functions are used simultaneously. 

4.3.2 Effectiveness of PCFormer module 
To verify the effect of PCFormer module usage on network detection, ablation experiments 
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are conducted on Glas, ISIC, and LGG datasets. VGG16 is used as the baseline model of the 
network backbone, and different combinations of PCFormer modules are utilized to replace 
the corresponding down sampling layers. The experimental results are shown in Table 6. 
 
Table 6. Result of the effectiveness of the PCFormer module (Bold numbers indicate the best performance) 

Usage of PCFormer module Dic IoU 
First layer Second layer Third layer Fourth layer Glas ISIC LGG Glas ISIC LGG 

    0.851 0.883 0.907 0.756 0.823 0.826 
√    0.879 0.912 0.927 0.786 0.852 0.869 
 √   0.872 0.904 0.921 0.776 0.841 0.860 
  √  0.874 0.914 0.926 0.779 0.855 0.867 
   √ 0.871 0.914 0.924 0.774 0.856 0.864 
√ √   0.866 0.913 0.925 0.767 0.854 0.867 
√  √  0.882 0.912 0.923 0.791 0.853 0.863 
√   √ 0.893 0.912 0.924 0.809 0.853 0.865 
 √ √  0.874 0.913 0.926 0.779 0.855 0.868 
 √  √ 0.891 0.912 0.926 0.805 0.853 0.867 
  √ √ 0.870 0.912 0.925 0.772 0.852 0.866 
√ √ √  0.905 0.913 0.925 0.829 0.855 0.866 
√ √  √ 0.878 0.910 0.925 0.786 0.850 0.867 
√  √ √ 0.877 0.913 0.927 0.783 0.854 0.869 
 √ √ √ 0.868 0.910 0.925 0.770 0.851 0.866 
√ √ √ √ 0.930 0.915 0.930 0.872 0.858 0.874 

 
From Table 6, we can see that the segmentation performance of the network changes to 

different degrees after applying different numbers and combinations of PCFormer modules 
in the network. Using the PCFormer module only in the first layer is the best combination to 
using only one PCFormer module. Its average scores for Dic, IoU in the three datasets are 
90.6% and 83.6%. Using the PCFormer module only in the first and fourth layers is the best 
combination of using only two PCFormer modules. Its average scores of Dic, IoU in the 
three datasets are 91.0% and 84.2%. Using the PCFormer module only in the first, second 
and third layers is the best combination of using only three PCFormer modules. The average 
scores of Dic, IoU in the three datasets are 91.4% and 85.0%. The average scores of Dic, IoU 
in the three datasets using a combination of four PCFormer modules at the same time were 
92.5% and 86.8%. Collectively, the segmentation performance of the network gradually 
increases as the number of PCFormer modules used increases, and the best results for 
medical image segmentation are achieved when PCFormer modules are used in each layer. 

4.3.3 Effectiveness of CDT module 
The CDT module is the feature enhancement module of the method in this paper. In order to 
synthetically evaluate the impact of the CDT module on this paper, ablation experiments are 
conducted on Glas, ISIC, and LGG datasets. The experiments use different combinations of 
CDT modules to replace the feature fusion process of direct splicing. The experimental 
results are shown in Table 7. 

From Table 7, it can be found that when only CDT module is used, the segmentation 
performance of the network on different datasets changes as the usage level changes. When 
the network uses the CDT module in the first layer of the feature fusion process, the Dic and 
IoU metrics scores of our method on the LGG dataset are the highest among those also using 
the CDT module in only one layer, reaching 92.4% and 86.4%, respectively. When the 
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network uses the CDT module in the second layer of the feature fusion process, the Dic and 
IoU metrics scores of our method on the Glas dataset are the highest among those also using 
the CDT module in only one layer, reaching 90.8% and 83.4%, respectively. When the 
network uses the CDT module in the feature fusion process in the third layer, the Dic and IoU 
metrics scores of the proposed method on the ISIC dataset are the highest among those also 
using the CDT module in only one layer, reaching 91.0% and 85.5%. Analyzing the cases of 
using the CDT module in both layers in Table 7, it can be found that the case of including the 
CDT module in the first layer feature fusion process has superior segmentation results on the 
LGG dataset than the case of not including the CDT module in the first layer feature fusion 
process. The segmentation results on the Glas dataset with the CDT module included in 
second-layer feature fusion were superior to those without the CDT module included in the 
second-layer feature fusion. The segmentation results on the ISIC dataset with the CDT 
module included in the third-layer feature fusion process are stronger overall than those 
without the CDT module included in the third-layer feature fusion process. When the CDT 
module is used simultaneously in the three-layer feature fusion process, the Dic and IoU 
scores of the network on the three datasets are greatly increased, and the average scores of 
Dic and IoU reach 92.5% and 86.8%, respectively. Comprehensively, the best results and 
generalization performance of medical image segmentation are achieved when the three-layer 
feature fusion process uses the CDT module at the same time. 

 
Table 7. The quantitative result on the CDT module  

(Bold numbers indicate the best performance) 
Usage of CDT module Dic IoU 

First layer Second layer Third layer Glas ISIC LGG Glas ISIC LGG 
   0.831 0.893 0.897 0.738 0.823 0.829 
√   0.863 0.910 0.924 0.763 0.850 0.864 
 √  0.908 0.910 0.924 0.834 0.850 0.864 
  √ 0.899 0.914 0.923 0.820 0.855 0.863 
√ √  0.893 0.910 0.927 0.809 0.851 0.869 
√  √ 0.866 0.909 0.926 0.767 0.849 0.867 
 √ √ 0.899 0.912 0.920 0.820 0.852 0.858 
√ √ √ 0.930 0.915 0.930 0.872 0.858 0.874 

 

4.3.4 The impact of backbone and feature enhancement modules 
In this paper, we change the downsampling method and feature fusion method based on U-
Net. The PCFormer module is used to downsample layer by layer, and then a feature 
enhancement module, the CDT module, is used to enhance the feature images to be fused with 
features. To evaluate the effect of these two structures on the network segmentation 
performance, ablation experiments were performed on Glas, ISIC, and LGG datasets. The 
experimental results are shown in Table 8. 
 

Table 8. Result of the backbone and feature enhancement modules  
(Bold numbers indicate the best performance) 

Whether to use PCFormer/CDT module Dic IoU 
PCFormer module CDT module Glas ISIC LGG Glas ISIC LGG 

  0.823 0.912 0.927 0.703 0.854 0.869 
 √ 0.871 0.913 0.925 0.774 0.854 0.867 
√  0.887 0.903 0.922 0.800 0.839 0.861 
√ √ 0.930 0.915 0.930 0.872 0.858 0.874 
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From Table 8, it can be found that the mean values of Dic and IoU on the three datasets for 
the network structure without the CDT module and PCFormer module are 88.7% and 80.9%, 
respectively, while its segmentation effect on the LGG dataset is slightly effective than that 
of the network structure using only CDT module and PCFormer module network structure. 
The mean values of Dic and IoU on the three datasets for the network structure using only 
the CDT module are 90.3% and 83.2%, respectively, while its segmentation effect on the 
ISIC dataset is better than that of the network structure with the out CDT module and 
PCFormer module and the network structure using only PCFormer module network structure 
without CDT module and PCFormer module and with PCFormer module only. The average 
scores of Dic and IoU on the three datasets for the network structure using the only 
PCFormer module are 90.4% and 83.3%, respectively, while its segmentation effect on the 
Glas dataset is better than that of the network structure with the out CDT module and 
PCFormer module and the network structure using only CDT module network structure 
without CDT module and PCFormer module and with CDT module only. Comparing the 
experimental data, we found that the average segmentation effect of the network structure 
using the PCFormer module alone and the network structure using the CDT module alone is 
improved more than that of the network structure without the CDT module and PCFormer 
module, and the different structures have the optimal performance on different data sets. The 
mean values of Dic and IoU for the network structure using both the PCFormer module and 
CDT module are 92.5% and 86.8%, respectively, while their segmentation results are 
optimal on all three datasets. Taken together, for the U-Net network, the best results and 
generalization of medical image segmentation are obtained when both the PCFormer module 
and CDT module are used. 

5. Conclusion 
In this paper, we propose a multi-level semantic enriched neural network approach for 
medical image segmentation. In the encoder structure, we present the PCFormer module. 
The PCFormer module uses pooling as the structure of the token mixer in the transformer to 
avoid unnecessary parameter operations in the down sampling process, thus avoiding the 
parameter explosion problem caused by using the transformer in the down sampling process. 
Among the decoder structures, the CDT module is presented, in which Cbam attention 
module utilizes its unique hybrid attention mechanism with the broad perceptual field 
generated by the DCC module, which can effectively optimize the problem of insufficient 
extraction of global and local feature regions by traditional networks. The MDTransformer 
module in the CDT module is employed to address the problem that traditional networks 
cannot effectively distinguish between background and target regions. The results on Glas, 
SIIM-ACR, ISIC and LGG datasets show that the method in this paper can significantly 
improve the segmentation accuracy of medical images. At present, the method in this paper 
is only suitable for segmentation on two-dimensional medical image slices, and in future 
work will be devoted to the task of segmenting medical images in higher dimensions. 

Acknowledgments 
This work was supported by the National Natural Science Foundation of China under Grant 
No. 62076117 and 62166026, the Jiangxi Science and Technology Program under Grant No. 
20232ABC03A32 and the Jiangxi Provincial Natural Science Foundation under Grant No. 
20224BAB212011, 20232BAB212008 and 20232BAB202051. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 9, September 2023                  2479 

References 
[1] F. Shamshad, S. Khan, S. Zamir, M. Khan, M. Hayat, F. Khan and H. Fu, "Transformers in 

medical imaging: A survey," Med. Image Anal., vol. 88, p. 102802, Jun. 2023.  
Article (CrossRef Link). 

[2] Z. Mirikharaji, K. Abhishek, A. Bissoto, C. Barata, S. Avila, E. Valle, M. Celebi and G. 
Hamarneh, "A survey on deep learning for skin lesion segmentation," Med. Image Anal., vol. 88, 
p. 102863, Jun. 2023. Article (CrossRef Link). 

[3] D. Gai, J. Zhang, Y. Xiao, W. Dong, Y. Zhong, and Y. Zhong, “RMTF-Net: Residual Mix 
Transformer Fusion Net for 2D Brain Tumor Segmentation,” Brain Sci., vol. 12, no. 9, p. 1145, 
Sep. 2022. Article (CrossRef Link). 

[4] D. Gai, X. Shen, H. Chen and P. Su, “Multi-focus image fusion method based on two stage 
of convolutional neural network,” Signal Process., vol. 176, p. 107681, Nov. 2020.  
Article (CrossRef Link). 

[5] Q. Wang, W. Min, Q. Han, Q. Liu, C. Zha, H. Zhao and Z. Wei, “Inter-Domain Adaptation 
Label for Data Augmentation in Vehicle Re-Identification,” IEEE Trans. Multimedia, vol. 24, pp. 
1031-1041, 2021. Article (CrossRef Link). 

[6] O. Ronneberger, P. Fischer, T. Brox, N. Navab, J. Hornegger, W. Wells and A. Frangi, “U-Net: 
Convolutional Networks for Biomedical Image Segmentation,” in Proc. of the 18th International 
Conference on Med. Image Comput. Comput. Assist. Interv. (MICCAI), Munich, Germany, pp. 
234-241, Oct. 2015. Article (CrossRef Link). 

[7] O. Oktay, J. Schlemper, L. Folgoc, M. Lee and H. Mattias “Attention U-Net: Learning Where to 
Look for the Pancreas,” arXiv Preprint arXiv:1804.03999, 2018. Article (CrossRef Link). 

[8] Z. Zhou, M. M. R. Siddiquee, and N. Tajbakhsh, “UNet plus plus: A Nested U-Net Architecture 
for Medical Image Segmentation,” in Proc. of the 4th International Workshop on Deep Learn. 
Med. Image Anal. (DLMIA), Granada, Spain, pp. 3-11, Sep. 2018. Article (CrossRef Link). 

[9] Z. Zhang, H. Fu and H. Dai, “ET-Net: A Generic Edge-aTtention Guidance Network for Medical 
Image Segmentation,” in Proc. of the 22nd International Conference on Med. Image Comput. 
Comput. Assist. Interv. (MICCAI), Shenzhen, China, pp. 442-450, Oct. 2019.  
Article (CrossRef Link). 

[10] J. Chen, Y. Lu, Q. Yu, X. Luo, A. Ehsan and W. Yan, “TransUNet: Transformers Make Strong 
Encoders for Medical Image Segmentation,” arXiv Preprint arXiv:2102.04306, 2021.  
Article (CrossRef Link). 

[11] J. Schlemper, O. Oktay, M. Schaa, M. Heinrich and B. Kainz, “Attention gated networks: 
Learning to leverage salient regions in medical images,” Med. Image Anal., vol. 53, pp. 197-207, 
Apr. 2019. Article (CrossRef Link). 

[12] X. Wang, R. Girshick, A. Gupta and K. He, “Non-local Neural Networks,” in Proc. of the 31st 
IEEE/CVF Conf. on Comput. Vis. Pattern Recog., Salt Lake City, UT, USA, pp. 7794–7803, Jun. 
2018. Article (CrossRef Link). 

[13] I. Bello, B. Zoph, Q. Le, A. Vaswani and J. Shlens, “Attention Augmented Convolutional 
Networks,” in Proc of the 2019 IEEE/CVF Int. Conf. on Comput. Vis. (ICCV), Seoul, Korea 
(South), pp. 3286–3295, Oct. 2019. Article (CrossRef Link). 

[14] N. Carion, F. Massa, G. Synnaeve, U. Nicolas and K. Alexander, “End-to-End Object Detection 
with Transformers,” in Proc. of Eur. Conf. Comput. Vis. (ECCV), Glasgow, US, pp. 213–229, 
Nov. 2020. Article (CrossRef Link). 

[15] H. Cao, Y. Wang, J. Chen, D. Jiang, X. Zhang, Q. Tian and M. Wang, “Swin-Unet: Unet-Like 
Pure Transformer for Medical Image Segmentation,” in Proc. of the 17th Eur. Conf. Comput. Vis. 
(ECCV), Tel Aviv, Israel, pp. 205-218, Oct. 2021. Article (CrossRef Link). 

[16] A. Dosovitskiy, L. Beyer, A. Kolesnikov and D. Weissenborn, “An Image is Worth 16x16 Words: 
Transformers for Image Recognition at Scale,” arXiv Preprint arXiv:2010.11929, 2020.  
Article (CrossRef Link). 
 
 

http://doi.org/10.1016/j.media.2023.102802
http://doi.org/10.1016/j.media.2023.102863
http://doi.org/10.3390/brainsci12091145
http://doi.org/10.1016/j.sigpro.2020.107681
http://doi.org/10.1109/TMM.2021.3104141
https://doi.org/10.1007/978-3-319-24574-4_28
https://doi.org/10.48550/arXiv.1804.03999
https://doi.org/10.1007/978-3-030-00889-5_1
https://doi.org/10.1007/978-3-030-32239-7_49
https://doi.org/10.48550/arXiv.2102.04306
https://doi.org/10.1016/j.media.2019.01.012
https://doi.org/10.1109/CVPR.2018.00813
https://doi.org/10.1109/ICCV.2019.00338
https://doi.org/10.1007/978-3-030-58452-8_13
https://doi.org/10.48550/arXiv.2105.05537
https://doi.org/10.48550/arXiv.2010.11929


2480                                                                                                               Gai et al.: MLSE-Net: Multi-level Semantic Enriched  
Network for Medical Image Segmentation 

[17] P. Ramachandran, N. Parmar, A. Vaswani and I. Bello, “Stand-Alone Self-Attention in Vision 
Models,” in Proc. of the 33rd Conference on Neural Inf. Process. Syst. (NeurIPS), Vancouver, 
Canada, pp. 68–80, Dec. 2019. Article (CrossRef Link). 

[18] Y. Li, T. Yao, Y. Pan and T. Mei, "Contextual Transformer Networks for Visual Recognition," 
IEEE Trans. Pattern Anal. Mach. Intell., vol. 45, no. 2, pp. 1489-1500, Feb. 2023.  
Article (CrossRef Link). 

[19] M. Fraz, P. Remagnino, A. Hopp, “Blood vessel segmentation methodologies in retinal images–a 
survey,” Comput. Meth. Prog. Bio., vol. 108, no. 1, pp. 407-433, Oct. 2012.  
Article (CrossRef Link). 

[20] H. Fu, Y. Xu, S. Li, D. Wong and J. Liu, “DeepVessel: Retinal Vessel Segmentation via Deep 
Learning and Conditional Random Field,” in Proc. of the 19th International Conference on Med. 
Image Comput. Comput. Assist. Interv. (MICCAI), Istanbul, Turkey, pp. 132-139, Oct. 2016. 
Article (CrossRef Link). 

[21] Z. Gu, J. Cheng, H. Fu, K. Zhou, H. Hao, Y. Zhao and T. Zhang “CE-Net: Context Encoder 
Network for 2D Medical Image Segmentation,” IEEE Trans. Med. Imaging, vol. 38, no. 10, pp. 
2281–2292, Oct. 2019. Article (CrossRef Link). 

[22] M. Li, Y. Chen, Z. Ji, K. Xie, S. Yuan, Q. Chen and S. Li, “Image Projection Network: 3D to 2D 
Image Segmentation in OCTA Images,” IEEE Trans. Med. Imaging, vol. 39, no. 11, pp. 3343-
3354, Nov. 2020. Article (CrossRef Link). 

[23] Z. Liu, Y. Song, V. Sheng, L. Wang and R. Jiang, “Liver CT sequence segmentation 
based with improved u-net and graph cut,” Expert Syst. Appl., vol. 126, pp. 54-63, Jul. 2019. 
Article (CrossRef Link). 

[24] S. Li, G. Tso, and H. Kaijian, “Bottleneck feature supervised u-net for pixel-wise liver and tumor 
segmentation,” Expert Syst. Appl., vol 145, p. 113131, May. 2020. Article (CrossRef Link). 

[25] N. Ibtehaz and M. S. Rahman, “MultiResUNet: Rethinking the u-net architecture for 
multimodal biomedical image segmentation,” Neural Networks, vol. 121, pp. 74-87, Jan. 2020. 
Article (CrossRef Link). 

[26] Y. Jiang, N. Tan, T. Peng and H. Zhang, “Retinal Vessels Segmentation Based on Dilated 
Multi-Scale Convolutional Neural Network,” IEEE Access, vol. 7, pp. 76342-76352, Jul. 2019. 
Article (CrossRef Link). 

[27] Y. Liu, C. Xu, Z. Chen, C. Chen, H. Zhao and X. Jin, “Deep Dual-Stream Network with Scale 
Context Selection Attention Module for Semantic Segmentation,” Neural Process. Lett., vol. 51, 
no. 3, pp. 2281-2299, Jun. 2020. Article (CrossRef Link). 

[28] H. Zhu, B. Wang, X. Zhang, and J. Liu, “Semantic image segmentation with shared 
decomposition convolution and boundary reinforcement structure,” Appl. Intell., vol. 50, no. 9, pp. 
2676–2689, Sep. 2020. Article (CrossRef Link). 

[29] D. Kushnure and N. Talbar, “MS-UNet: A multi-scale UNet with feature recalibration approach 
for automatic liver and tumor segmentation in CT images,” Comput. Med. Imaging Grap., vol. 
89, p. 101885, Mar. 2021. Article (CrossRef Link). 

[30] S. Hu, J. Zhang, and Y. Xia, “Boundary-aware network for kidney tumor segmentation,” in Proc. 
of the Int. Workshop on Mach. Learn. Med. Imaging (MLMI), Lima, Peru, pp. 189-198, Sep. 2020. 
Article (CrossRef Link) 

[31] S. Feng, H. Zhao, F. Shi, X. Chen, M. Wang and Y. Ma, “CPFNet: Context Pyramid Fusion 
Network for Medical Image Segmentation,” IEEE Trans. Med. Imaging, vol. 39, no. 10, pp. 
3008-3018, Oct. 2020. Article (CrossRef Link) 

[32] D. Peng, X. Yu, W. Peng and J. Lu, “DGFAU-Net: Global feature attention upsampling 
network for medical image segmentation,” Neural Comput. Appl., vol. 33, no. 18, pp. 12023-
12037, Sep. 2021. Article (CrossRef Link) 

[33] Y. Zhang, H. Liu, and Q. Hu, “TransFuse: Fusing Transformers and CNNs for Medical Image 
Segmentation,” in Proc. of the 24th International Conference on Med. Image Comput. Comput. 
Assist. Interv. (MICCAI), pp. 14–24, Sep. 2021. Article (CrossRef Link) 

 
 

https://doi.org/10.48550/arXiv.1906.05909
https://doi.org/10.1109/TPAMI.2022.3164083
https://doi.org/10.1016/j.cmpb.2012.03.009
https://doi.org/10.1007/978-3-319-46723-8_16
http://doi.org/10.1109/TMI.2019.2903562
http://doi.org/10.1109/TMI.2020.2992244
http://doi.org/10.1016/j.eswa.2019.01.055
http://doi.org/10.1016/j.eswa.2019.113131
http://doi.org/10.1016/j.neunet.2019.08.025
http://doi.org/10.1109/ACCESS.2019.2922365
http://doi.org/10.1007/s11063-019-10148-z
http://doi.org/10.1007/s10489-020-01671-x
http://doi.org/10.1016/j.compmedimag.2021.101885
https://doi.org/10.1007/978-3-030-59861-7_20
https://doi.org/10.1109/TMI.2020.2983721
http://doi.org/10.1007/s00521-021-05908-9
https://doi.org/10.1007/978-3-030-87193-2_2


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 9, September 2023                  2481 

[34] A. Lin, B. Chen, J. Xu, Z. Zhang, G. Lu and D. Zhang, “DS-TransUNet: Dual Swin Transformer 
U-Net for Medical Image Segmentation,” IEEE Trans. Instrum. Meas., vol. 71, May 2022.  
Article (CrossRef Link) 

[35] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, N. Gomez, L. Kaiser and I. 
Polosukhin, “Attention is all you need,” in Proc. of the 31st Conference on Neural Inf. Process. 
Syst. (NeurIPS), Long Beach, CA, USA, Dec. 2017. Article (CrossRef Link) 

[36] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin and B. Guo, “Swin transformer: 
Hierarchical vision transformer using shifted windows,” in Proc of the 18th IEEE/CVF Int. Conf. 
on Comput. Vis. (ICCV), Montreal, QC, Canada, pp. 9992–10002, Oct. 2021.  
Article (CrossRef Link) 

[37] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” 
IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 4, pp. 640–651, Apr. 2017.  
Article (CrossRef Link) 

[38] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu and N. Sang, “BiSeNet: Bilateral Segmentation 
Network for Real-Time Semantic Segmentation,” in Proc. of the 15th Eur. Conf. Comput. Vis. 
(ECCV), Munich, Germany, pp. 334-349, Oct. 2018. Article (CrossRef Link) 

[39] C. Yu, C. Gao, J. Wang, G. Yu, C. Shen and N. Sang, “BiSeNet V2: Bilateral Network with 
Guided Aggregation for Real-Time Semantic Segmentation,” Int. J. Comput. Vis., vol. 129, no. 
11, pp. 3051-3068, Nov. 2021. Article (CrossRef Link) 

[40] J. Valanarasu, V. Sindagi, I. Hacihaliloglu, and M. Patel, “KiU-Net: Towards Accurate 
Segmentation of Biomedical Images Using Over-Complete Representations,” in Proc. of the 
23rd International Conference on Med. Image Comput. Comput. Assist. Interv. (MICCAI), Lima, 
Peru, pp. 363–373, Oct. 2020. Article (CrossRef Link). 

[41] J. Wang, Q. Huang, F. Tang, J. Meng, J. Su, S. Song, “Stepwise Feature Fusion: Local Guides 
Global,” in Proc. of the 25th International Conference on Med. Image Comput. Comput. Assist. 
Interv. (MICCAI), Singapore, pp. 110-120, Sep. 2022. Article (CrossRef Link). 

[42] H. Wang, P. Cao, J. Wang, and O. Zaiane, "UCTransNet: Rethinking the Skip Connections in U-
Net from a Channel-Wise Perspective with Transformer," in Proc. of the 36th AAAI Conf. Artif. 
Intell.(AAAI), vol. 36(3), pp. 2441-2449, Jun. 2022. Article (CrossRef Link). 

[43] H. Huang, S. Xie, L. Lin, Y. Iwamoto, X. Han, W. Chen and R. Tong, "ScaleFormer: Revisiting 
the Transformer-based Backbones from a Scale-wise Perspective for Medical Image 
Segmentation," in Proc. of the 31st Int. Joint Conf. Artif. Intel. (IJCAI), Vienna, Austria, pp. 964-
971, Jul. 2022. Article (CrossRef Link). 

 
 
 

Di Gai received the M.E. and Ph.D. degrees in College of Computer Science and 
Technology from Jilin University, China, in 2018 and 2021, respectively. He is currently a 
lecturer, School of Mathematics and Computer Sciences, Nanchang University, China. He 
also is an assistant researcher in Jiangxi Key Laboratory of Smart City, China. His research 
interests include medical image processing and pattern recognition, especially on image 
fusion. 
 
 
 

 
Heng Luo is enrolled in the School of Software at Nanchang University, pursuing a B.S. 
degree. His research interests include computer vision and deep learning. 
 
 
 
 
 
 
 

http://doi.org/10.1109/TIM.2022.3178991
https://doi.org/10.48550/arXiv.1706.03762
https://doi.org/10.1109/ICCV48922.2021.00986
https://doi.org/10.1109/TPAMI.2016.2572683
https://doi.org/10.1007/978-3-030-01261-8_20
http://doi.org/10.1007/s11263-021-01515-2
https://doi.org/10.1007/978-3-030-59719-1_36
https://doi.org/10.1007/978-3-031-16437-8_11
https://doi.org/10.1609/aaai.v36i3.20144
https://ui.adsabs.harvard.edu/link_gateway/2022arXiv220714552H/doi:10.48550/arXiv.2207.14552


2482                                                                                                               Gai et al.: MLSE-Net: Multi-level Semantic Enriched  
Network for Medical Image Segmentation 

Jing He is enrolled in the School of Software at Nanchang University, pursuing a B.S. 
degree. Her research interests include computer vision and deep learning. 
 
 
 
 
 
 
 

 
Pengxiang Su received the Ph.D. degree in College of Computer Science and Technology 
from Jilin University, China in 2022. He is a lecturer at School of Software, Nanchang 
University, China. His research interests include computer vision, human motion analysis, 
and image recognition. 
 
 
 
 
 

 
Zheng Huang received the B.E. degree in School of Civil Engineering and 
Communication, North China University of Water Resources and Electric Power, China, in 
2021. He is currently pursuing the master’s degree in computer technology at Nanchang 
University, China. His research interests include computer vision and deep learning. 
 
 
 
 
 

 
Song Zhang is enrolled in the School of Software at Nanchang University, pursuing a B.S. 
degree. His research interests include computer vision and deep learning. 
 
 
 
 
 
 
 

 
Zhijun Tu graduated from the School of Computer Science, Zhengzhou University. He is 
now working as an experimenter in the School of Information Engineering, Nanchang 
University. His research interests include computer vision and deep learning. 


