DOI QR코드

DOI QR Code

Verification of Low-Level Wind Shear Prediction System Using Aircraft Meteorological Data Relay (AMDAR)

항공기 기상관측자료(AMDAR)를 이용한 인천국제공항 저고도 급변풍 예측시스템 검증

  • 석재혁 (국립기상과학원 기상응용연구부) ;
  • 최희욱 (국립기상과학원 기상응용연구부) ;
  • 김근회 (국립기상과학원 기상응용연구부) ;
  • 이상삼 (국립기상과학원 기상응용연구부) ;
  • 이용희 (국립기상과학원 기상응용연구부)
  • Received : 2023.07.10
  • Accepted : 2023.07.24
  • Published : 2023.09.30

Abstract

In order to predict low-level wind shear at Incheon International Airport (RKSI), a Low-Level Wind Shear prediction system (KMAP-LLWS) along the runway take-off and landing route at RKSI was established using Korea Meteorological Administration Post-Processing (KMAP). For the performance evaluation, the case of low-level wind shear cases calculated from Aircraft Meteorological Data Relay (AMDAR) from July 2021 to June 2022 was used. As a result of verification using the performance evaluation index, POD, FAR, CSI, and TSS were 0.5, 0.85, 0.13, and 0.34, respectively, and the prediction performance was improved by POD, CSI, and TSS compared to the Low-Level Wind Shear prediction system (LDPS-LLWS) calculated using the Korea Meteorological Administration's Local Data Assimilation and Prediction System (LDAPS). This means that the use of high-resolution numerical models improves the predictability of wind changes. In addition, to improve the high FAR of KMAP-LLWS, the threshold for low-level wind shear strength was adjusted. As a result, the most effective low-level wind shear threshold at 8.5 knot/100 ft was derived. This study suggests that it is possible to predict and respond to low-level wind shear at RKSI. In addition, it will be possible to predict low-level wind shear at other airports without wind shear observation equipment by applying the KMAP-LLWS.

Keywords

Acknowledgement

이 연구는 기상청 국립기상과학원 「수요자 맞춤형 기상정보 산출기술 개발 연구」(KMA2018-00622)의 지원으로 수행되었습니다.

References

  1. ICAO, "Manual on Low-Level Wind Shear First Edition", International Civil Aviation OrgaNization, 2005, p.10. 
  2. Kessler, E., "Low-level windshear alert systems and doppler radar in aircraft terminal operations", Journal of Aircraft, 27(5), 1990, pp. 423-428.  https://doi.org/10.2514/3.25293
  3. Kim, G. H., Choi, H. W., Seok, J. H., and Kim, Y. H., "Prediction of low level wind shear using high resolution numerical weather prediction model at the Jeju International Airport", J. Korean Soc. Aviat. Aeronaut, 29, 2021, pp.88-95.  https://doi.org/10.12985/ksaa.2021.29.4.088
  4. Chan, P. W., "Severe wind shear at Hong Kong International Airport: Climatology and case studies", Meteorological Applications, 24(3), 2017, pp.397-403.  https://doi.org/10.1002/met.1637
  5. Tse, S. M., Chan, P. W., and Wong, W. K., "A case study of missed approach of aircraft due to tailwind associated with thunderstorms", Meteorological Applications, 21(1), 2014, pp.50-61.  https://doi.org/10.1002/met.1296
  6. Tse, S. M., Hagio, M., and Maeda, Y., "Windshear detection by terminal Doppler weather radar during tropical cyclone Mujigae in 2015", Meteorological Applications, 26(4), 2019, pp.620-631.  https://doi.org/10.1002/met.1789
  7. Carruthers, D., Ellis, A., Hunt, J., and Chan, P. W., "Modelling of wind shear downwind of mountain ridges at Hong Kong International Airport", Meteorological Applications, 21(1), 2014, pp.94-104.  https://doi.org/10.1002/met.1350
  8. Chan, P. W., and Hon, K. K., "Performance of super high resolution numerical weather prediction model in forecasting terrain-disrupted airflow at the Hong Kong International Airport: Case studies", Meteorological Applications, 23(1), 2016, pp.101-114.  https://doi.org/10.1002/met.1534
  9. Hon, K. K., "Predicting low-level wind shear using 200-m-resolution NWP at the Hong Kong International Airport", Journal of Applied Meteorology and Climatology, 59(2), 2020, pp.193-206.  https://doi.org/10.1175/JAMC-D-19-0186.1
  10. Zhang, H., Wu, S., Wang, Q., Liu, B., Yin, B., and Zhai, X., "Airport low-level wind shear lidar observation at Beijing Capital International Airport", Infrared Physics & Technology, 96, 2019, pp.113-122.  https://doi.org/10.1016/j.infrared.2018.07.033
  11. Keller, T. L., Trier, S. B., Hall, W. D., Sharman, R. D., Xu, M., and Liu, Y., "Lee waves associated with a commercial jetliner accident at Denver International Airport", Journal of Applied Meteorology and Climatology, 54(7), 2015, pp.1373-1392.  https://doi.org/10.1175/JAMC-D-14-0270.1
  12. Hong, K. D., "A study on the low level windshear around Jeju International Airport", M.S. Thesis, Cheju National University, Jejudo, June 2006. 
  13. Cho, J. H., and Baik, H. J., "A study on the characteristics of low-level wind shear at Jeju International Airport from go-around flight perspective", J. Korean Soc. Aviat. Aeronaut, 29(1), 2021. 
  14. Min, B. H., Kim, Y. H., Choi, H. W., Jeong, H. S., Kim, K. R., and Kim, S. B., "LowLevel Wind Shear (LLWS) forecasts at Jeju International Airport using the KMAPP", Atmosphere, 30(3), 2020, pp.277-291.  https://doi.org/10.14191/ATMOS.2020.30.3.277
  15. WMO, "WMO and IATA Agree to Improve Aircraft Meteorological Reporting", WMO Press release, October 2020, Available: http://public.wmo-.int/en/media/press-release/wmo-and-iata-agree-improve-aircraft-meteorological-reporting 
  16. NIMS, "Development of Analysis and Fore-Casting Technologies on Urban and Aviation Meteorology", National Institute of Meteorological Sciences, 2021, pp.14-29. 
  17. NIMS, "Korea Meteorological Administration Post Processing (KMAPP) User Manual", NIMS Tech. Rep., 2017, pp.14. 
  18. ICAO, "The further development of specifications aimed at improving the safety and efficiency of international air operations in the approach, landing and take-off phases including the missed approach", 5th the Air Navigation Conferences, Montreal, 1967.