DOI QR코드

DOI QR Code

가스 폭발에 따른 폭발 인자 추정을 위한 방법 고찰

A Review of the Methods for the Estimation of the Explosion Parameters for Gas Explosions

  • 김민주 (인하대학교 에너지자원공학과) ;
  • 이지원 (인하대학교 에너지자원공학과) ;
  • 권상기 (인하대학교 에너지자원공학과)
  • 투고 : 2023.09.08
  • 심사 : 2023.09.21
  • 발행 : 2023.09.30

초록

가스 폭발의 위험성의 증대와 함께 가스 폭발의 규모와 영향을 예측하는데 필요한 폭발 인자들을 간접적으로 추정하는 방법들이 사용되고 있다. 본 연구에서는 주로 사용되고 있는 TNT 등가량 산정법, TNO 다중에너지 방법, BST 방법의 특성과 폭발 인자를 결정하는 과정을 비교하였다. TNT 등가량 산정법의 경우, 증기운 폭발의 형태와 폭발 물질 등 다양한 조건에 따라 적합한 efficiency factor를 선택하는 것이 필요하였다. TNO 다중에너지 방법은 클래스 번호를 결정하기 위한 객관적 기준이 부족하였으며 음의 과압을 추정하지는 못하였다. 기 보고된 인자값에 오기재로 보이는 부분을 확인하였으며 수정된 인자값을 제시하였다. BST 방법은 음의 과압을 포함한 보다 상세한 폭발 인자 추정이 가능하지만 사용하는 그래프가 가시적이지 않은 문제점이 있었다. 이를 보완하기 위해 그래프를 재작성하였으며 향후 그래프의 수식화를 통한 편리한 폭발 인자 추정이 가능할 것으로 기대된다.

With the increase of risk of gas explosion, various methods for indirectly estimating the explosion paramaters, which are required for the prediction of gas explosion scale and impact. In this study, the characteristics of the most frequently used methods such as TNT equivalent method, TNO multi-energy method, and BST method and the processes for determining the parameters of the methods were compared. In the case of TNT equivalent method, an adequate selection of the efficiency factor for various conditions such as the type of vapor cloud explosion and explosion material is needed. There is no objective guidelines for the selection of class number in TNO multi-energy method and it is not possible to estimate negative overpressure. It was found that there were some mistakes in the reported parameter values and suggested corrected values. BST method provides more detailed guidelines for the estimation of the explosion parameters including negative overpressure, but the graphs used in this methods are not clear. In order to overcome the problem, the graphs were redrawn. A more convenient estimation of explosion parameters with the numerical expression of the redrawn graphs will be available in the future.

키워드

과제정보

이 논문은 한국연구재단의 이공분야기초연구사업(NRF-2022R1F1A1064304)의 지원으로 수행되었습니다.

참고문헌

  1. 권상기, 2017, 폭발파에 의한 폭발압력곡선 경험식에 관한 연구, 화약발파, Vol. 35, No. 1, pp. 1-17.
  2. 권상기, 김하영, 2016, 중국 텐진항 폭발사고 원인과 관련된 폭발 에너지 분석, 화약발파, Vol. 34, No. 1, pp.
  3. 권상기, 박정찬, 2015, 가스폭발에 따른 폭발에너지를 평가하기 위한 TNT 등가량 환산방법에 대한 고찰, 화약발파, Vol. 33, No. 3, pp. 1-13.
  4. 박달재, 이영순, 임영훈, 2000, 증기운 폭발에 의해 발생된 폭풍 과압 예측 모델 검토, 한국가스학회지, Vol. 4, No. 4, pp. 50-57.
  5. 윤용균, 2018, 폭발성 물질의 폭발에 따른 폭발압력 평가, 화약발파, Vol. 36, No. 4, pp. 26-34.
  6. 윤용균, 2022, 증기운 폭발 예측 모델의 적용성 평가, 화약발파, Vol. 40, No. 3, pp. 44-53.
  7. 이광원, 오규형, 신상길, 김홍, 박문희, 김진배, 정기창, 김정훈, 이성은, 김태훈, 옥경재, 한승룡, 김정근, 송영애, 전경준, 박종일, 2006, 수소가스 사고 및 위험성에 대한 안전관리 기술개발, 호서대학교 연구보고서, pp. 180.
  8. 이수현, 강현구, 2014, 건축물에 작용하는 가스 폭발 초과압력 산정 방법의 비교 및 고찰 연구, 한국콘크리트학회 2014 가을 학술대회 논문집, 보령 비체팰리스, pp. 723-724.
  9. 이승훈, 김한수, 2021, 플랜트 폭발 사례 분석을 통한 증기운 폭발의 폭압 산정법 연구, 한국전산구조공학회 논문집, Vol. 34, No. 1, pp. 1-8.
  10. 최형빈, 김한수, 2015, 구조체에 작용하는 중소규모 혼합가스 폭발해석을 위한 최적 등가 TNT 해석 기법, 대한건축학회 논문집-구조계, Vol. 31, No. 11, pp. 3-10. https://doi.org/10.5659/JAIK_SC.2015.31.11.3
  11. 한국가스안전공사, 2023, 가스사고연감, KGS 2023-023, pp. 27-67.
  12. 한우섭, 한인수, 최이락, 2015, 화학물질의 폭발사고 피해예측 및 적용방안 연구, 안전보건공간 산업안전보건연구원 연구보고서, pp. 31-37.
  13. Alonso, F. D., Ferradas, E. G., Perez, J. F. S., Aznar, A. M., Gimeno, J. R., Alonso, J. M., 2006, Characteristic overpressure-impulse-distance curves for vapour cloud explosions using the TNO Multi-Energy model, Journal of Hazardous materials, Vol. 137, No. 2, pp. 734-741. https://doi.org/10.1016/j.jhazmat.2006.04.005
  14. Baker, Q. A., Tang, M. J., Scheier, E. A., Silva, G. J., 1996, Vapor cloud explosion analysis, Process Safety Progress, Vol. 15, No. 2, pp. 106-109. https://doi.org/10.1002/prs.680150211
  15. Bjerketvedt, D., Bakke, J.R., Van Wingerden, K., 1997, Gas explosion handbook, Journal of Hazardous materials, Vol. 52, No. 1, pp. 1-150. https://doi.org/10.1016/S0304-3894(97)81620-2
  16. Brasie, W. C., 1968, Guidelines for estimating damage explosion, In Symposium on Loss Prevention in the Process Industries, 63rd National Meeting, ACHIE, St. Louis, 1968.
  17. Factory Mutual Research Corporation, 1990, Guidelines for the estimation of property damage from outdoor vapor cloud explosions in chemical processing facilities, Technical Report.
  18. Eckhoff, R. K., 2016, Explosion hazards in the process industries, Gulf Professional Publishing, Oxford, United Kingdom, pp. 9-103.
  19. Eichler, T. V., Napadensky, H. S., 1977, Accidental vapor phase explosions on transportation routes near nuclear power plants, IIT Research Institute Final Rep. No. NUREG/CR-0075, US Nuclear Regulatory Commission, Washington, DC.
  20. Gugan, K., 1978, Unconfined Vapour Cloud Explosions, Inst., Chemical Engineers.
  21. Harris, R. J., Wickens, M. J., 1989, Understanding vapour cloud explosions: an experimental study, Institution of Gas Engineers.
  22. Health and Safety Commission, 1979, Advisory Committee on Major Hazards: Second Report, HM Stationery Office.
  23. Industrial Risk Insurers, 1990, Oil and Chemical Properties Loss Potential Estimation Guide, IRI-information February.
  24. Karlos, V., Solomos, G., 2013, Calculation of blast loads for application to structural components. Luxembourg: Publications Office of the European Union, 5.
  25. Kingery, C. N., Pannill, B. F., 1964, Peak overpressure vs scaled distance for TNT surface bursts (hemispherical charges). BRL Memorandum Report, No. 1518, pp. 1-22.
  26. Kingery, C. N., 1966, Air blast parameters versus distance for hemispherical TNT surface bursts, Aberdeen Proving Ground, MD: Ballistic Research Laboratories, pp. 10-60.
  27. Kinney, G. F. and Graham, K. I., 1985, Explosive Shocks in air, Poringer-Verlag Berlin Heidelberg, New York Tokyo.
  28. Kinsella, K. G., 1993, A Rapid Assessment Methodology for the Prediction of Vapour Cloud Explosions, Research Report No. 357, Technical Research Centre of Finland.
  29. Lea, C. J., 2002, A Review of the State-of-the-Art in Gas Explosion Modelling HSL/2002/02, Fire and Explosion Group, Harpur Hill, Buxton, SK17 9JN, pp. 7-9.
  30. Lobato, J., Rodriguez, J., Jimenez, C., Llanos, J., Nieto-Marquez, A., Inarejos, A., 2009, Consequence analysis of an explosion by simple models: Texas refinery gasoline explosion case. Afinidad, Vol. 66, No. 543, pp. 372-379.
  31. Lopez, E., Rengel, R., Mair, G. W., Isorna, F., 2015, Analysis of high-pressure hydrogen and natural gas cylinders explosions through TNT equivalent method, In Proceeding Hyceltec 2015, Iberian symposium on hydrogen, fuel cells and advanced batteries, pp. 5-8.
  32. Melani, L., Sochet, I., Rocourt, X., Jallais, S., 2009, Review of methods for estimating the overpressure and impulse resulting from a hydrogen explosion in a confined/obstructed volume, International Conference on Hydrogen Safety, France, pp. 1-12.
  33. Melton, T. A., J. D. Marx, 2009, Estimating flame speeds for use with the BST blast curves, Process Safety Progress, Vol. 28, No. 1, pp. 5-10. https://doi.org/10.1002/prs.10281
  34. Mercx, W. P. M., and Van den Berg, A. C., 1997, The explosion blast prediction model in the revised CPR 14E (yellow book), Process Safety Progress, Vol. 16, No. 3, pp. 152-159. https://doi.org/10.1002/prs.680160308
  35. Pierorazio, A. J., Thomas, J. K., Baker, Q. A., Ketchum, D. E., 2005, An update to the Baker-Strehlow-Tang vapor cloud explosion prediction methodology flame speed table, Process Safety Progress, Vol. 24, No. 1, pp. 59-65. https://doi.org/10.1002/prs.10048
  36. Pritchard, D. K., 1989, A review of methods for predicting blast damage from vapour cloud explosions, Journal of Loss Prevention in the Process Industries, Vol. 2, No. 4, pp. 187-193. https://doi.org/10.1016/0950-4230(89)80032-4
  37. Prugh, R. W., 1987, November, Evaluation of unconfined vapor cloud explosion hazards. In Proceedings of the International Conference on Vapor Cloud Modeling, American Institute of Chemical Engineers, NY.
  38. Rashid, Z. A., Alias, A. B., Ku Hamid, K. H., Bani, M. S., Harbawi, M. E., 2015, Analysis the effect of explosion efficiency in the TNT equivalent blast explosion model. In ICGSCE 2014: Proceedings of the International Conference on Global Sustainability and Chemical Engineering, pp. 381-390.
  39. Ree, S., Kang, T., 2014, Prediction of gas explosion overpressure interacting with structures for blast-resistant design, The 2014 world congress on advances in civil, environmental, and materials research, Busan, Korea, pp. 1-13.
  40. Ree, S., Kang, T. H. K., Lee, H., Shin, M., 2020, Empirical gas explosion models for onshore plant structures: Review and comparative analysis, Journal of performance of constructed facilities, Vol. 34, No. 4, pp. 04020075.
  41. Sochet, I., 2010, Blast effects of external explosions, In Eighth International Symposium on Hazards, Prevention, and Mitigation of Industrial Explosions, pp. 1-32.
  42. Tang, M. J., Baker, Q. A., 1999, A new set of blast curves from vapor cloud explosion, Process Safety Progress, Vol. 18, No. 4, pp. 235-240. https://doi.org/10.1002/prs.680180412
  43. Turner, T., Sari, A., 2012, Vapor cloud explosion prediction methods-comparison of TNO multi-energy (ME) and Baker-Strehlow-Tang (BST) models in terms of vulnerability of structural damage caused by an explosion, In Structures Congress 2012, pp. 177-188.
  44. Van den Berg, A. C., 1985, The multi-energy method: a framework for vapour cloud explosion blast prediction, Journal of Hazardous materials, Vol. 12, No. 1, pp. 1-10. https://doi.org/10.1016/0304-3894(85)80022-4