DOI QR코드

DOI QR Code

Characterizing Regional Ozone Concentration Changes Due to the Adoption of Eco-Friendly Vehicles in South Korea

친환경 자동차 도입에 따른 지역별 오존 농도 변화 특성 분석

  • Chaeyeong Yang (Division of Earth and Atmospheric Sciences, Pusan National University) ;
  • Wonbae Jeon (Department of Atmospheric Sciences, Pusan National University) ;
  • DongJin Kim (Division of Earth and Atmospheric Sciences, Pusan National University) ;
  • Jaehyeong Park (Division of Earth and Atmospheric Sciences, Pusan National University) ;
  • Hyeonsik Choe (Division of Earth and Atmospheric Sciences, Pusan National University) ;
  • Jeonghyeok Mun (Division of Earth and Atmospheric Sciences, Pusan National University)
  • 양채영 (부산대학교 지구환경시스템학부) ;
  • 전원배 (부산대학교 대기환경과학과) ;
  • 김동진 (부산대학교 지구환경시스템학부) ;
  • 박재형 (부산대학교 지구환경시스템학부) ;
  • 최현식 (부산대학교 지구환경시스템학부) ;
  • 문정혁 (부산대학교 지구환경시스템학부)
  • Received : 2023.08.10
  • Accepted : 2023.09.01
  • Published : 2023.09.30

Abstract

This study investigates the impact of increased adoption of eco-friendly vehicles on ozone (O3) concentrations in South Korea, utilizing the community multiscale air quality (CMAQ) model. In the summer of 2017 (June-August), we conducted two experiments: a BASE experiment, representing baseline emissions, and an R_30 experiment, involving a 30% emission reduction due to eco-friendly vehicles. The contrast between these experiments reveals that, while most air pollutants decreased with reduced vehicle emissions, O3 concentrations surprisingly increased (up to 2.1 parts per billion) across South Korea. A further examination of O3 concentration changes was conducted by analyzing daytime and nighttime variations as well as wind direction. During the daytime, O3 concentrations notably rose near metropolitan areas due to reduced O3 titration (O3 + NO → O2 + NO2) resulting from emission reductions. At nighttime, O3 concentrations exhibited a greater increase, attributed to the transport of daytime-generated O3 to rural regions. Notably, the impact of reduced emissions in metropolitan areas on O3 concentrations in downwind areas varied depending on the prevailing wind direction. These findings highlight that the promotion of eco-friendly vehicles, though effective in lowering certain air pollutants, might not directly influence O3 concentrations. This study underscores the need to comprehensively understand the complicated chemistry of O3 to develop effective strategies for air quality management.

Keywords

Acknowledgement

이 과제는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었음.

References

  1. Appel, K. W., Bash, J. O., Fahey, K. M., Foley, K. M., Gilliam, R. C., Hogrefe, C., Hutzell, W. T., Kang, D., Mathur, R., Murphy, B. N., 2021, The community multiscale air quality (CMAQ) model versions 5.3 and 5.3.1: system updates and evaluation, Geosci. Model Dev., 14, 2867-2897. https://doi.org/10.5194/gmd-14-2867-2021
  2. Byun, D., Schere, K. L., 2006, Review of the governing equaations, computational algorithms, and other components of the models-3 community multiscaleair quality (CMAQ) modeling system, Appl. Mech. Rev., 59, 51-77. https://doi.org/10.1115/1.2128636
  3. Choi, S. W., Bae, C. H., Kim, H. C., Kim, T. K., Lee, H. K., Song, S. J., Jang, J. P., Lee, K. B., Choi, S. A., Lee, H. J., Park, Y. S., Park, S. Y., Kim, Y. M., Yoo, C., 2021, Analysis of the national air pollutant emissions inventory (CAPSS 2017) data and assessment of emissions based on air quality modeling in the Republic of Korea, Asian J. Atmos. Environ., 15, 1976-6912. https://doi.org/10.5572/ajae.2021.064
  4. Geng, F., Tie, X., Xu, J., Zhou, G., Peng, L., Gao, W., Tang, X., Zhao, C., 2008, Characterizations of ozone, NOx, and VOCs measured in Shanghai, China., Atmos. Environ., 42, 6873-6883. https://doi.org/10.1016/j.atmosenv.2008.05.045
  5. Guenther, A., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L., Wang, X., 2012, The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471-1492. https://doi.org/10.5194/gmd-5-1471-2012
  6. Ha, H., Lee, S. D., Lee, J. K., Park, C. O., Mun, T. R., 2006, On characteristics of surface ozone concentration and temporal.spatial distribution in Kwangyang-Bay, J. KOSAE., 22, 642-652.
  7. Han, M. H., 2015, A Study on the plans for activating eco-friendly cars, Master's Thesis, Hanyang University, Seoul, Korea.
  8. Han, S., Bian, H., Feng, Y., Liu, A., Li, X., Zeng, F., Zhang, X., 2011, Analysis of the relationship between O3, NO and NO2 in Tianjin, China, AAQR., 11, 128-139. https://doi.org/10.4209/aaqr.2010.07.0055
  9. Heidenreich, S., Spieth, P., Petschnig, M., 2017, Ready, Steady, Green: Examining the effectiveness of external policies to enhance the adoption of eco-friendly innovations, J. Prod. Innov. Manag., 34, 343-359. https://doi.org/10.1111/jpim.12364
  10. Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A., Munoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., 2020, The ERA5 global reanalysis, Q. J. R. Meteorol. Soc., 146, 1999-2049. https://doi.org/10.1002/qj.3803
  11. Innes, W. B., 1981, Effect of nitrogen oxide emissions on ozone levels in metropolitan regions, Environ. Sci. Technol., 15, 904-912. https://doi.org/10.1021/es00090a003
  12. Jeon, W. B., Choi, Y. S., Souri, A. H., Roy, A., Diao, L, Pan, S., Lee, H. W., Lee, S. H., 2018, Identification of chemical fingerprints in long-range transport of burning induced upper tropospheric ozone from Colorado to the North Atlantic Ocean, Sci. Total Environ., 613-614, 820-828. https://doi.org/10.1016/j.scitotenv.2017.09.177
  13. Jeong, Y. M., Lee, S. H., Lee, H. W., Jeon, W. B., 2012, Numerical study on the process analysis of ozone production due to emissions reduction over the Seoul metropolitan area, J. Environ. Sci. Int., 21, 339-349. https://doi.org/10.5322/JES.2012.21.3.339
  14. Kampa, M., Castanas, E., 2008, Human health effects of air pollution, Environ. Pollut., 151, 362-367. https://doi.org/10.1016/j.envpol.2007.06.012
  15. Kim, C. H., Lee, S. H., Jang, M., Chun, S., Kang, S., Ko, K. K., Lee, J. J., Lee, H. J., 2020, A Study on statistical parameters for the evaluation of regional air quality modeling results-Focused on fine dust modeling, J. Environ. Impact Assess., 29, 272-285.
  16. Lee, H. K., Choi, E. L., Lee, H. J., Lee, S. Y., Lee, J. Y., 2020, A Study on the seasonal correlation between O3 and PM2.5 in Seoul in 2017, J. Korean Soc. Atmos. Environ., 36, 533-542. https://doi.org/10.5572/KOSAE.2020.36.4.533
  17. Li, M., Zhang, Q., Kurokawa, J., Woo, J., He, K., Lu, Z., Ohara, T., Song, Y., Streets, D. G., Carmichael, G. R., Cheng, Y., Hong, C., Huo, H., Jiang, X., Kang, S., Lin, F., Su, H., Zheng, B., 2017, MIX: a mosaic Asian an thropogenic emission inventory under the international collaboration framework of the MICS-Asia and HTAP, Atmos. Chem. Phys., 17, 935-963. https://doi.org/10.5194/acp-17-935-2017
  18. Li, M., Yu, S., Chen, X., Li, Z., Zhang, Y., Wang, L., Liu, W., Li, P., Lichtfouse, E., Rosenfeld, D., Seinfeld, J. H., 2021, Large scale control of surface ozone by relative humidity observed during warm seasons in China, Environ. Chem. Lett., 19, 3981-3989. https://doi.org/10.1007/s10311-021-01265-0
  19. Li, R., Cui, L., Hongbo, F., Li, J., Zhao, Y., Chen, J., 2020, Satellite-based estimation of full-coverage ozone (O3) concentration and health effect assessment across Hainan Island, J. Clean Prod., 244, 118773.
  20. Lim, H. J., Lee, Y. J., 2011, Characterization of ozone distributions in Pohang: measurement data during 2002~2006, J. Korean Soc. Atmos. Environ., 27, 50-62. https://doi.org/10.5572/KOSAE.2011.27.1.050
  21. Lin, J., Youn, D., Liang, X., Wuebbles, D. J., 2008, Global model simulation of summertime U.S. ozone diurnal cycle and its sesitivity to PBL mixing, spatial resolution, and emissions, Atmos. Environ., 42, 8470-8483. https://doi.org/10.1016/j.atmosenv.2008.08.012
  22. Liu, C., Shi, K., 2021, A Review on methodology in O3-NOx-VOC sensitivity study, Environ. Pollut., 291, 118249.
  23. Mazzuca, G. M., Ren, X., Loughner, C. P., Estes, M., Crawford, J. H., Pickering, K. E., Weinheimer, A. J., Dickerson, R. R., 2016, Ozone production and its sensitivity to NOx and VOCs: results from the DISCOVERAQ field experiment, Houston 2013, Atmos. Chem. Phys., 16, 14463-14474. https://doi.org/10.5194/acp-16-14463-2016
  24. Mehdipour, V., Memarianfard, M., 2017, Application of support vector machine and gene expression programming on tropospheric ozone prognosticating for Tehran metropolitan, Civ. Eng, J., 3, 557-567. https://doi.org/10.28991/cej-030984
  25. Ministry of Environment (ME), 2023, https://www.air.go.kr/contents/view.do?contentsId=1&menuId=24.
  26. Ministry of Land, Infrastructure and Transport (MOLIT), 2023, http://www.molit.go.kr/USR/NEWS/m_71/dtl.jsp?lcmspage=1&id=95087830.
  27. Ministry of Trade, Industry and Energry (MOTIE), 2021, http://www.motie.go.kr/motie/ne/presse/press2/bbs/bbsView.do?bbs_seq_n=163830&bbs_cd_n=81currentPage=1&search_key_n=&cate_n=1&dept_v=&search_val_v=.
  28. Nevers, N. D., 2000, Air Pollution Control Engineering, seconded. McGraw-Hill Companies Inc., New York, 571-573.
  29. Oh, I., Kim, Y., Hwang, M., 2005, Ozone pollution patterns and the relation to meteorological conditions in the greater Seoul area, J. Korean Soc. Atmos. Environ., 21, 357-365.
  30. Oh, J. I., 2007, Correlation analysis between surface ozone and precursors in Daeyeon-Dong area of Busan metropolitan city, Master's Thesis, Pukyung National University, Busan, Korea.
  31. Seinfeld, J. H., Pandis, S. N., 2016, Atmospheric chemistry and physics: from air pollution to climate change, 3rd ed., John Wiley & Sons, Inc., New Jersey, 175-213.
  32. Sillman, S., 1995, The use of NOy, H2O2, and HNO3 as indicators for ozone-NOx-hydrocarbon sensitivity in urban locations, J. Geophys. Res. Atmos., 100, 14175-14188. https://doi.org/10.1029/94JD02953
  33. Sillman, S., He, D., 2002, Some theoretical results concerning O3-NOx-VOC chemistry and NOx-VOC indicators, J. Geophys. Res. Atmos., 107, 4659.
  34. Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., Wang, W., Powers, J. G., Duda, M. G., & Barker, D. M., 2019, A description of the advanced research WRF model version 4, National Center for Atmospheric Research: Boulder, CO, USA.
  35. Song, S. K., Shon, Z. H., 2008, Analysis of chemical and meteorological effects on the concentration difference of photochemical air pollutants between coastal and inland regions in Busan, J. Environ. Sci. Int., 17, 1169-1182. https://doi.org/10.5322/JES.2008.17.10.1169
  36. Song, S. K., Kim, Y. K., Kang, J. E., 2009, Characteristics of ozone concentrations around an urban valley based on the intensive air quality measurement during spring and summer of 2006, J. Korean Soc. Atmos. Environ., 25, 289~303. https://doi.org/10.5572/KOSAE.2009.25.4.289
  37. Song, F., Shin, J. Y., Jusino-Atresino, R., Gao, Y., 2011, Relationships among the springtime ground-level NOx, O3 and NO3 in the vicinity of highways in the US East Coast, Atmos. Pollut. Res., 2, 374-383. https://doi.org/10.5094/APR.2011.042
  38. Talbot, R., Mao, H., Sive, B., 2005, Diurnal characteristics of surface level O3 and other important trace gases in New England, J. Geophys. Res., 110, D09307.
  39. Transportation Research Board (TRB), 2002, The congestion mitigation and air quality improvement program: assessing 10 years of experience, Special Report 264. Transportation Research Board : National Research Council, Washinton, D.C., USA.
  40. Wang, N., Lyu, X., Deng, X., Huang, X., Jiang, F., Ding, A., 2019, Aggravation O3 pollution due to NOx emission control in eastern China, Sci. Total Environ., 677, 732-744. https://doi.org/10.1016/j.scitotenv.2019.04.388
  41. Wang, P., Guo, H., Hu, J., Sri, H. K., Ying, Q., Zhang, H., 2019, Responses of PM2.5 and O3 concentrations to changes of meteorology and emissions in China, Sci. Total Environ., 662, 297-301. https://doi.org/10.1016/j.scitotenv.2019.01.227
  42. Wang, T., Wu, Y. Y., Cheung, T. F., Lam, K. S., 2001, A Study of surface ozone and the relation to complex wind flow in Hong Kong, Atmos. Environ., 35, 3203-3215. https://doi.org/10.1016/S1352-2310(00)00558-6
  43. Yang, Y., Liu, X., Zheng, J., Tan, Q., Feng, M., Qu, Y., An, J., Cheng, N., 2019, Characteristics of one-year observation of VOCs, NOx, and O3 at an urban site in Wuhan, China, J. Environ. Sci., 79, 297-310. https://doi.org/10.1016/j.jes.2018.12.002
  44. Zhang, K., Batterman, S., 2013, Air pollution and health risks due to vehicle traffic, Sci. Total Environ., 450-451, 307-316. https://doi.org/10.1016/j.scitotenv.2013.01.074
  45. Zoran, M. A., Savastru, R. S., Savastru, D. M., Tautan, M. N., 2020, Assessing the relationship between ground levels of ozone (O3) and nitrogen dioxide (NO2) with coronavirus (COVID-19) in Milan, Italy, Sci. Total Environ., 740, 140005.