DOI QR코드

DOI QR Code

Comparison of blood parameters according to fecal detection of Mycobacterium avium subspecies paratuberculosis in subclinically infected Holstein cattle

  • Seungmin Ha (National Institute of Animal Science, Rural Development Administration) ;
  • Seogjin Kang (National Institute of Animal Science, Rural Development Administration) ;
  • Mooyoung Jung (National Institute of Animal Science, Rural Development Administration) ;
  • Sang Bum Kim (National Institute of Animal Science, Rural Development Administration) ;
  • Han Gyu Lee (National Institute of Animal Science, Rural Development Administration) ;
  • Hong-Tae Park (Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University) ;
  • Jun Ho Lee (Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University) ;
  • Ki Choon Choi (National Institute of Animal Science, Rural Development Administration) ;
  • Jinho Park (Department of Veterinary Internal Medicine, College of Veterinary Medicine, Jeonbuk National University) ;
  • Ui-Hyung Kim (National Institute of Animal Science, Rural Development Administration) ;
  • Han Sang Yoo (Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University)
  • 투고 : 2023.04.19
  • 심사 : 2023.07.27
  • 발행 : 2023.09.30

초록

Background: Mycobacterium avium subspecies paratuberculosis (MAP) causes a chronic and progressive granulomatous enteritis and economic losses in dairy cattle in subclinical stages. Subclinical infection in cattle can be detected using serum MAP antibody enzyme-linked immunosorbent assay (ELISA) and fecal polymerase chain reaction (PCR) tests. Objectives: To investigate the differences in blood parameters, according to the detection of MAP using serum antibody ELISA and fecal PCR tests. Methods: We divided 33 subclinically infected adult cattle into three groups: seronegative and fecal-positive (SNFP, n = 5), seropositive and fecal-negative (SPFN, n = 10), and seropositive and fecal-positive (SPFP, n = 18). Hematological and serum biochemical analyses were performed. Results: Although the cows were clinically healthy without any manifestations, the SNFP and SPFP groups had higher platelet counts, mean platelet volumes, plateletcrit, lactate dehydrogenase levels, lactate levels, and calcium levels but lower mean corpuscular volume concentration than the SPFN group (p < 0.017). The red blood cell count, hematocrit, monocyte count, glucose level, and calprotectin level were different according to the detection method (p < 0.05). The SNFP and SPFP groups had higher red blood cell counts, hematocrit and calprotectin levels, but lower monocyte counts and glucose levels than the SPFN group, although there were no significant differences (p > 0.017). Conclusions: The cows with fecal-positive MAP status had different blood parameters from those with fecal-negative MAP status, although they were subclinically infected. These findings provide new insights into understanding the mechanism of MAP infection in subclinically infected cattle.

키워드

과제정보

The authors would like to express their deepest gratitude to Sanghun Park, Youngso Hong, Jihyeon Lee, Soyoung Lee, and Nuri Baek for their technical support.

참고문헌

  1. Butot S, Ricchi M, Sevilla IA, Michot L, Molina E, Tello M, et al. Estimation of performance characteristics of analytical methods for Mycobacterium avium subsp. paratuberculosis detection in dairy products. Front Microbiol. 2019;10:509.
  2. Buergelt CD, Hall C, McEntee K, Duncan JR. Pathological evaluation of paratuberculosis in naturally infected cattle. Vet Pathol. 1978;15(2):196-207. https://doi.org/10.1177/030098587801500206
  3. Tessema MZ, Koets AP, Rutten VP, Gruys E. How does Mycobacterium avium subsp. paratuberculosis resist intracellular degradation? Vet Q. 2001;23(4):153-162. https://doi.org/10.1080/01652176.2001.9695105
  4. He Z, De Buck J. Localization of proteins in the cell wall of Mycobacterium avium subsp. paratuberculosis K10 by proteomic analysis. Proteome Sci. 2010;8(1):1-9. https://doi.org/10.1186/1477-5956-8-1
  5. Khol JL, Braun AL, Slana I, Kralik P, Wittek T. Testing of milk replacers for Mycobacterium avium subsp. paratuberculosis by PCR and bacterial culture as a possible source for Johne's disease (paratuberculosis) in calves. Prev Vet Med. 2017;144:53-56. https://doi.org/10.1016/j.prevetmed.2017.05.013
  6. Gamberale F, Pietrella G, Sala M, Scaramella P, Puccica S, Antognetti V, et al. Management of Mycobacterium avium subsp. paratuberculosis in dairy farms: selection and evaluation of different DNA extraction methods from bovine and buffaloes milk and colostrum for the establishment of a safe colostrum farm bank. MicrobiologyOpen. 2019;8(10):e875.
  7. Garvey M. Mycobacterium avium paratuberculosis: a disease burden on the dairy industry. Animals (Basel). 2020;10(10):1773.
  8. McNees AL, Markesich D, Zayyani NR, Graham DY. Mycobacterium paratuberculosis as a cause of Crohn's disease. Expert Rev Gastroenterol Hepatol. 2015;9(12):1523-1534. https://doi.org/10.1586/17474124.2015.1093931
  9. Beaudeau F, Belliard M, Joly A, Seegers H. Reduction in milk yield associated with Mycobacterium avium subspecies paratuberculosis (Map) infection in dairy cows. Vet Res. 2007;38(4):625-634. https://doi.org/10.1051/vetres:2007021
  10. Hempel RJ, Bannantine JP, Stabel JR. Transcriptional profiling of ileocecal valve of Holstein dairy cows infected with Mycobacterium avium subsp. paratuberculosis. PLoS One. 2016;11(4):e0153932.
  11. Fernandez-Garcia A, Zhou Y, Garcia-Alonso M, Andrango HD, Poyales F, Garzon N. Comparing medium-term clinical outcomes following XEN® 45 and XEN® 63 device implantation. J Ophthalmol. 2020;2020:4796548.
  12. Karuppusamy S, Mutharia L, Kelton D, Plattner B, Mallikarjunappa S, Karrow N, et al. Detection of Mycobacterium avium subspecies paratuberculosis (MAP) microorganisms using antigenic MAP cell envelope proteins. Front Vet Sci. 2021;8:615029.
  13. Gilardoni LR, Paolicchi FA, Mundo SL. Bovine paratuberculosis: a review of the advantages and disadvantages of different diagnostic tests. Rev Argent Microbiol 2012;44(3):201-215.
  14. Thoresen OF, Falk K, Evensen O. Comparison of immunohistochemistry, acid-fast staining, and cultivation for detection of Mycobacterium paratuberculosis in goats. J Vet Diagn Invest. 1994;6(2):195-199. https://doi.org/10.1177/104063879400600210
  15. Coetsier C, Havaux X, Mattelard F, Sadatte S, Cormont F, Buergelt K, et al. Detection of Mycobacterium avium subsp. paratuberculosis in infected tissues by new species-specific immunohistological procedures. Clin Diagn Lab Immunol. 1998;5(4):446-451. https://doi.org/10.1128/CDLI.5.4.446-451.1998
  16. Bates A, Laven R, O'Brien R, Liggett S, Griffin F. Estimation of the sensitivity and specificity of four serum ELISA and one fecal PCR for diagnosis of paratuberculosis in adult dairy cattle in New Zealand using Bayesian latent class analysis. Prev Vet Med. 2020;185:105199.
  17. Abdelaal AM, Elgioushy MM, Gouda SM, El-Adl MM, Hashish EA, Elgaml SA, et al. Hemato-biochemical and molecular markers (Is900) of cattle infected with Johne's disease in Egypt. Slov Vet Res. 2019;56:421-431.  https://doi.org/10.26873/SVR-780-2019
  18. Sharma S, Gautam A, Singh S, Chaubey KK, Mehta R, Sharma M, et al. Immunological and Hemato-biochemical alterations in diarrhoeic buffaloes screened for Mycobacterium avium subspecies paratuberculosis infection using 'indigenous ELISA kit'. Comp Immunol Microbiol Infect Dis. 2022;87:101833.
  19. Hassan N, Randhawa CS, Zargar UR. Evaluating the hemato-biochemical indices in relation to the different etiologies of chronic diarrhea in dairy cattle and buffalo. Comp Clin Pathol. 2022;31(4):585-595. https://doi.org/10.1007/s00580-022-03357-x
  20. Park HE, Park JS, Park HT, Shin JI, Kim KM, Park SR, et al. Fetuin as a potential serum biomarker to detect subclinical shedder of bovine paratuberculosis. Microb Pathog. 2022;169:105675.
  21. Park HT, Shin MK, Sung KY, Park HE, Cho YI, Yoo HS. Effective DNA extraction method to improve detection of Mycobacterium avium subsp. paratuberculosis in bovine feces. Daehan Suyi Haghoeji. 2014;54(1):55-57.
  22. Sevilla IA, Garrido JM, Molina E, Geijo MV, Elguezabal N, Vazquez P, et al. Development and evaluation of a novel multicopy-element-targeting triplex PCR for detection of Mycobacterium avium subsp. paratuberculosis in feces. Appl Environ Microbiol. 2014;80(12):3757-3768. https://doi.org/10.1128/AEM.01026-14
  23. Collins MT. Update on paratuberculosis: 1. Epidemiology of Johne's disease and the biology of Mycobacterium paratubertulosis. Irish Vet J. 2003;56:565-574. 
  24. Lepper AW, Embury DH, Anderson DA, Lewis VM. Effects of altered dietary iron intake in Mycobacterium paratuberculosis-infected dairy cattle: sequential observations on growth, iron and copper metabolism and development of paratuberculosis. Res Vet Sci. 1989;46(3):289-296. https://doi.org/10.1016/S0034-5288(18)31168-8
  25. Harvey JW. Veterinary Hematology: A Diagnostic Guide and Color Atlas. Amsterdam: Elsevier Health Sciences; 2011. 
  26. Loo M, Beguin Y. The effect of recombinant human erythropoietin on platelet counts is strongly modulated by the adequacy of iron supply. Blood. 1999;93(10):3286-3293. https://doi.org/10.1182/blood.V93.10.3286.410k29_3286_3293
  27. Latimer KS. Duncan and Prasse's Veterinary Laboratory Medicine: Clinical Pathology. Hoboken: John Wiley & Sons; 2011. 
  28. Nam H, Jones D, Cooksey RC, Gao Y, Sink S, Cox J, et al. Synergistic inhibitory effects of hypoxia and iron deficiency on hepatic glucose response in mouse liver. Diabetes. 2016;65(6):1521-1533. https://doi.org/10.2337/db15-0580
  29. Cichota LC, Moresco RN, Duarte MM, da Silva JE. Evaluation of ischemia-modified albumin in anemia associated to chronic kidney disease. J Clin Lab Anal. 2008;22(1):1-5. https://doi.org/10.1002/jcla.20226
  30. Beard JL. Iron biology in immune function, muscle metabolism and neuronal functioning. J Nutr. 2001;131(2):568S-579S. https://doi.org/10.1093/jn/131.2.568S
  31. Ohira Y, Chen CS, Hegenauer J, Saltman P. Adaptations of lactate metabolism in iron-deficient rats. Proc Soc Exp Biol Med. 1983;173:213-216. https://doi.org/10.3181/00379727-173-41633
  32. Soulas C, Conerly C, Kim WK, Burdo TH, Alvarez X, Lackner AA, et al. Recently infiltrating MAC387(+) monocytes/macrophages a third macrophage population involved in SIV and HIV encephalitic lesion formation. Am J Pathol. 2011;178(5):2121-2135. https://doi.org/10.1016/j.ajpath.2011.01.023
  33. Fernandez M, Benavides J, Castano P, Elguezabal N, Fuertes M, Munoz M, et al. Macrophage subsets within granulomatous intestinal lesions in bovine paratuberculosis. Vet Pathol. 2017;54(1):82-93. https://doi.org/10.1177/0300985816653794
  34. Khare S, Nunes JS, Figueiredo JF, Lawhon SD, Rossetti CA, Gull T, et al. Early phase morphological lesions and transcriptional responses of bovine ileum infected with Mycobacterium avium subsp. paratuberculosis. Vet Pathol. 2009;46(4):717-728. https://doi.org/10.1354/vp.08-VP-0187-G-FL
  35. Rossi G, Nigro G, Tattoli I, Vincenzetti S, Mariani P, Magi GE, et al. Adhesion molecules and cytokine profile in ileal tissue of sheep infected with Mycobacterium avium subsp. paratuberculosis. Microbes Infect. 2009;11(6-7):698-706. https://doi.org/10.1016/j.micinf.2009.04.006
  36. Aho AD, McNulty AM, Coussens PM. Enhanced expression of interleukin-1α and tumor necrosis factor receptor-associated protein 1 in ileal tissues of cattle infected with Mycobacterium avium subsp. paratuberculosis. Infect Immun. 2003;71(11):6479-6486. https://doi.org/10.1128/IAI.71.11.6479-6486.2003
  37. Scott MA, Stockham SL. Fundamentals of Veterinary Clinical Pathology. Hoboken: John Wiley & Sons; 2013.