DOI QR코드

DOI QR Code

Numerical modeling and global performance analysis of a 15-MW Semisubmersible Floating Offshore Wind Turbine (FOWT)

  • Received : 2023.08.10
  • Accepted : 2023.09.15
  • Published : 2023.09.25

Abstract

The global performance of a 15 MW floating offshore wind turbine, a newly designed semisubmersible floating foundation with multiple heave plates by CNOOC, is investigated with two independent turbine-floater-mooring coupled dynamic analysis programs CHARM3D-FAST and OrcaFlex. The semisubmersible platform hosts IEA 15 MW reference wind turbine modulated for VolturnUS-S and hybrid type (chain-wire-chain with clumps) 3×2 mooring lines targeting the water depth of 100 m. The numerical free-decay simulation results are compared with physical experiments with 1:64 scaled model in 3D wave basin, from which appropriate drag coefficients for heave plates were estimated. The tuned numerical simulation tools were then used for the feasibility and global performance analysis of the FOWT considering the 50-yr-storm condition and maximum operational condition. The effect of tower flexibility was investigated by comparing tower-base fore-aft bending moment and nacelle translational accelerations. It is found that the tower-base bending moment and nacelle accelerations can be appreciably increased due to the tower flexibility.

Keywords

References

  1. Abbas, N.J., Zalkind, D.S., Pao, L. and Wright, A. (2022), "A reference open-source controller for fixed and floating offshore wind turbines", Wind Energy Sci., 7(1), 53-73. https://doi.org/10.5194/wes-7-53-2022.
  2. Abdelmoteleb, S.E., Mendoza, A.S.E., dos Santos, C.R., Bachynski-Polic, E.E., Griffith, D.T. and Oggiano, L. (2022), "Preliminary sizing and optimization of semisubmersible substructures for future generation offshore wind turbines", J. Physics: Conference Series.
  3. Allen, C., Viscelli, A., Dagher, H., Goupee, A., Gaertner, E., Abbas, N., Hall, M. and Barter, G. (2020), Definition of the UMaine VolturnUS-S reference platform developed for the IEA wind 15-megawatt offshore reference wind turbine, National Renewable Energy Lab.(NREL), Golden, CO (United States); Univ. of Maine.
  4. Arcandra and Kim, M.H. (2003), "Hull/mooring/riser coupled dynamic analysis and sensitivity study of a tankerbased FPSO", Appl. Ocean Res., 25, 367-382. https://doi.org/10.1016/j.apor.2003.02.001.
  5. Bae, Y.H. and Kim, M.H. (2011), "Rotor-floater-mooring coupled dynamic analysis of mono-column-TLPtype FOWT (Floating Offshore Wind Turbine)", Ocean Syst. Eng., 1(1), 93-109. https://doi.org/10.12989/ose.2011.1.1.093.
  6. Bae, Y.H. and Kim, M.H. (2014), "Coupled dynamic analysis of multiple wind turbines on a large single floater", Ocean Eng., 92, 175-187. https://doi.org/10.1016/j.oceaneng.2014.10.001
  7. Bae, Y.H. and Kim, M.H. (2014), "Influence of control strategy to FOWT global performance by aero-elastic-control-floater-mooring coupled dynamic analysis", J. Ocean Wind Energy, 1(1), 50-58
  8. Bae, Y.H., Kim, M.H. and Kim, H.C. (2017), "Performance changes of a floating offshore wind turbine with broken mooring line", Renew. Energ., 101, 364-375. https://doi.org/10.1016/j.renene.2016.08.044.
  9. Bak, C., Zahle, F., Bitsche, R., Kim, T., Yde, A., Henriksen, L.C., Hansen, M.H., Blasques, J.P.A.A., Gaunaa, M. and Natarajan, A. (2013), "The DTU 10-MW reference wind turbine", Danish wind power research 2013.
  10. Chen, J., Jin, C. and Kim, M.H. (2023), "Systematic comparisons among OpenFAST, Charm3D-FAST simulations and DeepCWind model test for 5 MW OC4 semisubmersible offshore wind turbine", Ocean Syst. Eng., 13(2), 173-193. https://doi.org/10.12989/ose.2023.13.2.173.
  11. Cummins, W. (1962), "The impulse response function and ship motions".
  12. DNVGL-ST-0119. (2021), "Floating wind turbine structures"
  13. DNV-ST-0437. (2016), "Loads and site conditions for wind turbines"
  14. EDP renewable (2020), Windfloat atlantic project starts supplying clean energy in Portugal. URL. https://www.edpr.com/en/news/2020/01/02/windfloat-atlantic-project-starts-supplying-clean-energyportugal.
  15. Gaertner, E., Rinker, J., Sethuraman, L., Zahle, F., Anderson, B., Barter, G.E., Abbas, N.J., Meng, F., Bortolotti, P. and Skrzypinski, W. (2020), IEA wind TCP task 37: definition of the IEA 15-megawatt offshore reference wind turbine, National Renewable Energy Lab.(NREL), Golden, CO (United States).
  16. Garrett, D.L. (1982), "Dynamic analysis of slender rods".
  17. Gomes, J.G., Lin, Y., Jiang, J., Yan, N., Dai, S. and Yang, T. (2022), "Review of offshore wind projects status: new approach of floating turbines", Proceedings of the 2022 5th International Conference on Power and Energy Applications (ICPEA).
  18. Huang, W.H. and Yang, R.Y. (2021), "Water depth variation influence on the mooring line design for FOWT within shallow water region", J. Mar. Sci. Eng., 9(4), 409. https://doi.org/10.3390/jmse9040409.
  19. Islam, M.T. (2016), Design, Numerical Modelling and Analysis of a Semi-submersible Floater Supporting the DTU 10MW Wind Turbine (Ph.D. thesis). Norwegian University of Science and Technology, Trondheim, Norway.
  20. Jang, H.K., Park, S., Kim, M.H., Kim, K.H. and Hong, K. (2019), "Effects of heave plates on the global performance of a multi-unit floating offshore wind turbine", Renew. Energ., 134, 526-537. https://doi.org/10.1016/j.renene.2018.11.033.
  21. Jonkman, B.J. (2009), TurbSim user's guide: Version 1.50, National Renewable Energy Lab.(NREL), Golden, CO (United States).
  22. Jonkman, J.M. and Buhl, M.L. (2005), FAST user's guide, National Renewable Energy Laboratory Golden, CO, USA.
  23. Jonkman, J.M., Butterfield, S., Musial, W. and Scott, G. (2009), Definition of a 5-MW reference wind turbine for offshore system development, National Renewable Energy Lab.(NREL), Golden, CO (United States).
  24. Jonkman, J.M. and Matha, D. (2011), "Dynamics of offshore floating wind turbines-analysis of three concepts", Wind Energy, 14(4), 557-569. https://doi.org/10.1002/we.442.
  25. Kikuchi, Y. and Ishihara, T. (2019), "Upscaling and levelized cost of energy for offshore wind turbines supported by semi-submersible floating platforms", J. Physics: Conference series.
  26. Kim, H.C. and Kim, M.H. (2015), "Global performances of a semi-submersible 5 MW wind-turbine including second-order wave-diffraction effects", Ocean Syst. Eng., 5(3), 139-160. https://doi.org/10.12989/ose.2015.5.3.139.
  27. Kim, H.C. and Kim, M.H. (2016), "Comparison of simulated platform dynamics in steady / dynamic winds and irregular waves for OC4 semi-submersible 5 MW wind-turbine against DeepCwind model-test results", Ocean Syst. Eng., 6(1), 1-21. https://doi.org/10.12989/ose.2016.6.1.001.
  28. Kim, H.C., Kim, K.H., Kim, M.H. and Hong, K. (2017), "Global performance of a KRISO semisubmersible multiunit floating offshore wind turbine: Numerical simulation vs. model test", Int. J. Offshore Polar Eng., 27(1), 70-81. https://doi.org/10.17736/ijope.2017.fvr02.
  29. Lee, I.J. and Kim, M.H. (2022), "Feasibility study for wrap-buoy assisted wet-tow and stepwise installation of mono-bucket foundation for 15MW offshore wind turbine", Ocean Syst. Eng., 12(4), 413-437. https://doi.org/10.12989/ose.2022.12.4.413.
  30. Lopez-Pavon, C. and Souto-Iglesias, A. (2015), "Hydrodynamic coefficients and pressure loads on heave plates for semi-submersible floating offshore wind turbines: A comparative analysis using large scale models", Renew Energ, 81, 864-881. https://doi.org/10.1016/j.renene.2015.04.003.
  31. Mahfouz, M.Y., Molins, C., Trubat, P., Hernandez, S., Vigara, F., Pegalajar-Jurado, A., Bredmose, H. and Salari, M. (2021), "Response of the International Energy Agency (IEA) Wind 15 MW WindCrete and Activefloat floating wind turbines to wind and second-order waves", Wind Energy Sci., 6(3), 867-883. https://doi.org/10.5194/wes-6-867-2021
  32. Moriarty, P.J. and Hansen, A.C. (2005), AeroDyn theory manual, National Renewable Energy Lab., Golden, CO (US)
  33. NREL (2023), OpenFAST. NREL, URL: https://github.com/OpenFAST/openfast.
  34. Orcina (2023), OrcaFlex, Orcina, https://www.orcina.com/
  35. Robertson, A., Jonkman, J., Masciola, M., Song, H., Goupee, A., Coulling, A. and Luan, C. (2014a), Definition of the semisubmersible floating system for phase II of OC4, National Renewable Energy Lab.(NREL), Golden, CO (United States)
  36. Robertson, A., Jonkman, J., Vorpahl, F., Popko, W., Qvist, J., Froyd, L., Chen, X., Azcona, J., Uzunoglu, E. and Guedes Soares, C. (2014b), "Offshore code comparison collaboration continuation within IEA wind task 30: Phase II results regarding a floating semisubmersible wind system", Proceedings of the International Conference on Offshore Mechanics and Arctic Engineering.
  37. Rinker, J., Gaertner, E., Zahle, F., Skrzypinski, W., Abbas, N., Bredmose, H., Barter, G. and Dykes, K. (2020), "Comparison of loads from HAWC2 and OpenFAST for the IEA Wind 15 MW Reference Wind Turbine", J. Physics: Conference Series.
  38. Ran, Z. (2000), Coupled dynamic analysis of floating structures in waves and currents, Texas A&M University
  39. Shim, S. and Kim, M. (2008), "Rotor-floater-tether coupled dynamic analysis of offshore floating wind turbines", Proceedings of the ISOPE International Ocean and Polar Engineering Conference.
  40. Tian, X. (2016), Design, Numerical Modelling and Analysis of TLP Floater Supporting the DTU 10MW Wind Turbine (Ph.D. thesis). Norwegian University of Science and Technology, Trondheim, Norway.
  41. Wang, L., Robertson, A., Jonkman, J. and Yu, Y.H. (2022), "OC6 phase I: Improvements to the OpenFAST predictions of nonlinear, low-frequency responses of a floating offshore wind turbine platform", Renew Energ., 187, 282-301. https://doi.org/10.1016/j.renene.2022.01.053.
  42. Wu, J. and Kim, M.H. (2021), "Generic upscaling methodology of a floating offshore wind turbine", Energies, 14(24), 8490. https://doi.org/10.3390/en14248490.
  43. Xu, K., Larsen, K., Shao, Y., Zhang, M., Gao, Z. and Moan, T. (2021), "Design and comparative analysis of alternative mooring systems for floating wind turbines in shallow water with emphasis on ultimate limit state design", Ocean Eng., 219, 108377. https://doi.org/10.1016/j.oceaneng.2020.108377.
  44. Xue, W. (2016), Design, Numerical Modelling and Analysis of a Spar Floater Supporting the DTU 10MW Wind Turbine (Ph.D. thesis). Norwegian University of Science and Technology, Trondheim, Norway.
  45. Yang, C.K. and Kim, M.H. (2010), "Transient effects of tendon disconnection of a TLP by hull-tendon-riser coupled dynamic analysis", Ocean Eng., 37(8-9), 667-677. https://doi.org/10.1016/j.oceaneng.2010.01.005.