DOI QR코드

DOI QR Code

Numerical and experimental analysis of a wave energy converter in extreme waves

  • Ignacio P. Johannesen (School of Engineering, Computing and Mathematics, University of Plymouth) ;
  • Jose M. Ahumada (Institute of Naval Architecture and Ocean Engineering, Campus Miraflores, Universidad Austral de Chile Valdivia) ;
  • Gonzalo Tampier (Institute of Naval Architecture and Ocean Engineering, Campus Miraflores, Universidad Austral de Chile Valdivia) ;
  • Laura Gruter (Dynamics of Maritime Systems, Technical University of Berlin) ;
  • Cristian Cifuentes (Institute of Naval Architecture and Ocean Engineering, Campus Miraflores, Universidad Austral de Chile Valdivia)
  • Received : 2023.03.20
  • Accepted : 2023.08.17
  • Published : 2023.09.25

Abstract

In the present paper, a numerical and experimental analysis for a wave energy converter under extreme environmental conditions is carried out. After the definition of design waves, including a 100-year return period stochastic sea state and a deterministic rogue wave condition, a numerical analysis using potential theory and a RANS equations solver are compared with experiments carried out at the Seakeeping Basin at the Technical University of Berlin. Results are discussed with special emphasis on the limits of potential theory methods for the evaluation of extreme wave conditions and the use of the presented methodology for early design stages.

Keywords

Acknowledgement

Acknowledgement to the German Academic Exchange Service (DAAD) and the Marine Energy Research and Innovation Center (MERIC) for the partial funding of this investigation is given.

References

  1. Adegeest, L., Braathen, A. and Vada, T. (2000), "Evaluation of methods for estimation of extreme nonlinear ship responses based on numerical simulations and model tests", Proceedings of the 22nd Symposium on Naval Hydrodynamics.
  2. Astariz, S. and Iglesias, G. (2015), "The economics of wave energy: A review", Renew. Sust. Energ. Rev., 45, 397-408. https://doi.org/10.1016/j.rser.2015.01.061.
  3. Bhattacharya, R. (1978), Dynamics of Marine Vehicles.
  4. Choi, J. and Yoon, S.B. (2009), "Numerical simulations using momentum source wave-maker applied to RANS equation model", Coast. Eng., 56(10), 1043-1060. https://doi.org/10.1016/j.coastaleng.2009.06.009.
  5. Clauss, G.F., Haver, S. and Strach, M. (2010), "Breaking wave impacts on platform columns: Stochastic analysis and DNV recommended practice", Proceedings of the ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering. https://doi.org/10.1115/OMAE2010-20293.
  6. Clauss, G., Schmittner, C. and Hennig, J. (2006), "Systematically varied rogue wave sequences for the experimental investigation of extreme structure behavior", Proceedings of OMAE2006 25th International Conference on Offshore Mechanics and Arctic Engineering.
  7. Clauss, Gunther, Klein, M. and Dudek, M. (2010), "Influence of the bow shape on loads in high and steep waves", Proceedings of the 29th International Conference on Ocean, Offshore and Arctic Engineering, 1-12.
  8. Delhommeau, G. (1989), "Amelioration des performances des codes de calcul de diffraction-radiation au premier ordre", In 2nd Journees de l'hydrodynamique, 70-86.
  9. Dietz, J.S. (2004), Application of Conditional Waves as Critical Wave Episodes for Extreme Loads on Marine Structures (Issue July), Technical University of Denmark.
  10. EMEC: European Marine Energy Centre (2003), http://www.emec.org.uk/
  11. Ferziger, J.H., Peric, M. and Street, R.L. (2020), Computational methods for fluid dynamics, Springer International Publishing. https://doi.org/10.1007/978-3-319-99693-6.
  12. Fonseca, N., Guedes Soares, C. and Pascoal, R. (2006), "Structural loads induced in a containership by abnormal wave conditions", J. Mar. Sci. Technol., 11(4), 245-259. https://doi.org/10.1007/s00773-006-0222-9.
  13. Fonseca, N., Pascoal, R. and Guedes Soares, C. (2008), "Global structural loads induced by abnormal waves and design storms on a FPSO", J. Offshore Mech. Arct., 130(2), 021005. https://doi.org/10.1115/1.2779334.
  14. Friis-Hansen, P. and Nielsen, L.P. (1995), "On the new wave model for the kinematics of large ocean waves", OMAE 1995, Proceedings of the 14th Intl Conf on Offshore Mechanics & Arctic Engng.
  15. Ghasemi, A., Anbarsooz, M., Malvandi, A. and Hedayati, F. (2017), "A nonlinear computational modeling of wave energy converters: A tethered point absorber and a bottom-hinged flap device", Renew. Energ., 103, 774-785. https://doi.org/10.1016/j.renene.2016.11.011.
  16. Gorf, P., Barltrop, N., Okan, B., Hodgson, T. and Rainey, R. (2000), FPSO bow damage in steep waves, Rogue Waves 2000.
  17. Heras, P., Thomas, S., Kramer, M. and Kofoed, J.P. (2019), "Numerical and experimental modelling of awave energy converter pitching in close proximity to a fixed structure", J. Mar. Sci. Eng., 7(7), 1-27. https://doi.org/10.3390/jmse7070218.
  18. Iglesias, G., Astariz, S. and Vazquez, A. (2018), "The economics of wave and tidal energy", (Eds., D. Greaves and G. Iglesias), Wave and Tidal Energy, 513-532.
  19. ITTC (2014), ITTC - Recommended Guidelines - Wave energy converter - Model test experiments 7.5-02-07-03.7 (Revision 01). 13.
  20. Karunakaran, D., Baerheim, M. and Spidsore, N. (1998), "Measure and Simulated dynamic response of a jacket and a large jack-up platform in North Seac, Proceedings of the 16th InternationalConference on Offshore Mechanics and Arctic Engineering, Vol. II, May.
  21. Klein, M., Clauss, G.F., Rajendran, S., Soares, C.G. and Onorato, M. (2016), "Peregrine breathers as design waves for wave-structure interaction", Ocean Eng., 128, 199-212. https://doi.org/10.1016/j.oceaneng.2016.09.042.
  22. Lucero, F., Catalan, P.A., Ossandon, A., Beya, J., Puelma, A. and Zamorano, L. (2017), "Wave energy assessment in the central-south coast of Chile", Renew. Energ., 114, 120-131. https://doi.org/10.1016/j.renene.2017.03.076.
  23. Pregnan, I. and Tampier, G. (2018), "Simulation of motions and forces for a generic wave energy converter using RANS CFD", (Ed., C. Guedes Soares), Advances in Renewable Energies Offshore, Taylor & Francis Group.
  24. Ransley, E., Hann, M., Greaves, D., Raby, A. and Simmonds, D. (2013), "Numerical and physical modeling of extreme waves at Wave Hub", J. Coast. Res., 2(65), 1645-1650. https://doi.org/10.2112/SI65-278.1.
  25. Ransley, E.J.J., Greaves, D., Raby, A., Simmonds, D. and Hann, M. (2017), "Survivability of wave energy converters using CFD", Renew. Energ., 109, 235-247. https://doi.org/10.1016/j.renene.2017.03.003.
  26. Robertson, A., Jonkman, J., Musial, W., Vorpahl, F. and Popko, W. (2013), "Offshore code comparison collaboration , continuation : Phase II results of a floating semisubmersible wind system", EWEA Offshore 2013, November, 1-15.
  27. Saincher, S. and Banerjee, J. (2016), "Influence of wave breaking on the hydrodynamics of wave energy converters: A review", Renew. Sust. Energ. Rev., 58, 704-717. https://doi.org/10.1016/j.rser.2015.12.301.
  28. Schmittner, C.E. (2005), Rouge Wave Impact on Marine Structures, Technical University of Berlin.
  29. Schmittner, C. amd Hennig, J. (2012), "Optimization of short-crested deterministic wave sequences via a phase-amplitude iteration scheme", Proceedings of the ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering.
  30. Sirigu, S.A., Bonfanti, M., Begovic, E., Bertorello, C., Dafnakis, P., Giorgi, G., Bracco, G. and Mattiazzo, G. (2020), "Experimental investigation of the mooring system of a wave energy converter in operating and extreme wave conditions", J. Mar. Sci. Eng., 8(3). https://doi.org/10.3390/jmse8030180.
  31. Suyuthi, A. and Haver, S.K. (2009), "Extreme loads due to wave breaking Against platform column", Proceedings of the 19th (2009) International Offshore and Polar Engineering Conference ISOPE2009.
  32. Tampier, G. and Zilic, F. (2018), "Blade-resolved CFD analysis and validation of blockage correction methods for tidal turbines", (Ed., Guedes Soares), Advances in Renewable Energies Offshore, 137-142. Taylor & Francis Group.
  33. Tampier, G. and Grueter, L. (2017), "Hydrodynamic analysis of a heaving wave energy converter", Int. J. Mar. Energ., 19, 304-318. https://doi.org/10.1016/j.ijome.2017.08.007.
  34. Torhaug, R., Winterstein, S.R. and Braathen, A. (1998), "Nonlinear ship loads: Stochastic models for extreme response", J. Ship Res., 42(1), 46-55. https://doi.org/10.5957/jsr.1998.42.1.46
  35. Tromans, P.S., Anaturk, A.R. and Hagemeijer, P. (1991), "A new model for the kinematics of large ocean waves-application as a design wave", Proceedings of the 1st International Offshore and Polar Engineering Conference.
  36. van Rij, J., Yu, Y.H., Guo, Y. and Coe, R.G. (2019), "A wave energy converter design load case study", J. Mar. Sci. Eng., 7(8), 1-22. https://doi.org/10.3390/jmse7080250.
  37. Windt, C., Davidson, J. and Ringwood, J.V. (2018), "High-fidelity numerical modelling of ocean wave energy systems: A review of computational fluid dynamics-based numerical wave tanks", Renew. Sust. Energ. Rev., 93, 610-630. https://doi.org/10.1016/j.rser.2018.05.020.
  38. Yu, Y. and Li, Y. (2011), "Preliminary results of a RANS simulation for a floating point absorber wave energy system in extreme wave conditions", Omae 2011, 2009(October), 1-8.