DOI QR코드

DOI QR Code

A Study on the Analysis of Chemical Leakage Accidents Using CFD Simulation

CFD 시뮬레이션을 활용한 화학물질 누출사고 분석에 관한 연구

  • Su-Bin An (Disaster Scientific Investigation Division, National Disaster Management Research Institute) ;
  • Chang-Bong Jang (JCB Solution Co., Ltd) ;
  • Kyung-Su Lee (Disaster Scientific Investigation Division, National Disaster Management Research Institute) ;
  • Hye-Ok Kwon (Environment Team, Joint Inter-Agency Center for Chemical Emergency Preparedness of Ulsan)
  • 안수빈 (국립재난안전연구원 재난원인조사실) ;
  • 장창봉 (제이씨비솔루션 주식회사) ;
  • 이경수 (국립재난안전연구원 재난원인조사실) ;
  • 권혜옥 (울산화학재난합동방재센터 환경팀)
  • Received : 2023.07.14
  • Accepted : 2023.09.22
  • Published : 2023.09.30

Abstract

Objectives: Chemical accidents cause extensive human and environmental damage. Therefore, it is important to prepare measures to prevent their recurrence and minimize future damage through accident investigation. To this end, it is necessary to identify the accident occurrence process and analyze the extent of damage. In this study, the development process and damage range of actual chemical leakage accidents were analyzed using CFD. Methods: For application to actual chemical leakage accidents using FLACS codes specialized for chemical dispersion simulation among CFD codes, release rate calculation and 3D geometry were created, and scenarios for simulation were derived. Results: The development process of the accident and the dispersion behavior of materials were analyzed considering the influencing factors at the time of the accident. In addition, to confirm the validity of the results, we compared the results of the actual damage impact investigation and the simulation analysis results. As a result, both showed similar damage impact ranges. Conclusions: The FLACS code allows the detailed analysis of the simulated dispersion process and concentration of substances similar to real ones. Therefore, it is judged that the analysis method using CFD simulation can be usefully applied as a chemical accident investigation technique.

Keywords

Acknowledgement

본 연구는 국립재난안전연구원 연구과제(NDMI-주요-2022-06-01, NDMI-주요-2023-06-01)의 지원으로 수행되었습니다.

References

  1. AShamsuddin DS, Fekeri AF, Muchtar A, Khan F, Khor BC et al. Computational fluid dynamics modelling approaches of gas explosion in the chemical process industry: A review. Process Saf Environ Prot 2023;170:112-138(https://doi.org/10.1016/j.psep.2022.11.090)
  2. Center for Chemical Process Safety(CCPS). Guidelines for chemical process quantitative risk analysis, 2nd Edition. US: American Institute of Chemical Engineers; 2000. p. 57-296
  3. Dasgotra A, Varun Teja GV, Sharma A, Mishra KB. CFD modeling large-scale flammable cloud dispersion using FLACS. J Loss Prev Process Ind 2018;56:531-536(https://doi.org/10.1016/j.jlp.2018.01.001)
  4. Gexcon. FLACS v10.9 user's manual.; 2019. p. 85-454
  5. Hansen OR, Gavelli F, Ichard, M, Davis SG. Validation of FLACS against experimental data sets from the model evaluation database for LNG vapor dispersion. J Loss Prev Process Ind 2010;23(6):857-877(https://doi.org/10.1016/j.jlp.2010.08.005)
  6. Korea Environment Institute(KEI). A study on the improvement of environmental impact assessment of industrial complexes based on risk assessment of chemical leakage accidents. KEI.; 2013
  7. Korea Occupational Safety and Health Agency(KOSHA). Technical Guideline for Selection of Worst and Alternative Accident Scenarios, P-107-2020. KOSHA.; 2020. p. 5-6
  8. Lee JH, Cho DH, Cha JH. A Study on the use of CFD for risk prediction of chemical terrorism in urban areas. J Police Sci.; 2022;22(1):59-77
  9. Lim JY, Jo AR, Nam GW, Kim BH, Park CH et al. Case study of chemical accident in the leakage of hydrochloric acid. Proceedings of Korean Society of Environmental Health(KSEH), KR. 2022. p. 184
  10. Middha P, Hansen OR. CFD simulation study to investigate the risk from hydrogen vehicles in tunnels, J Hydrogen Energy 2009;34(14):5875-588(https://doi.org/10.1016/j.ijhydene.2009.02.004)
  11. Middha P, Hansen OR. Predicting deflagration to detonation transition in hydrogen explosions. Process Saf Prog 2008;27(3):192-204(https://doi.org/10.1002/prs.10242)
  12. Min MM. New approach to using 3-D dispersion modeling for accidental toxic gas releases in the metropolitan area. Master's Thesis, Ajou Universty of Korea, Suwon. 2017
  13. Moen A, Mauri L, Narasimhamurthy VD. Comparison of k-ε models in gaseous release and dispersion simulations using the CFD code FLACS. Process Saf Environ Prot 2019;130:306-316(https://doi.org/10.1016/j.psep.2019.08.016)
  14. National Disaster Management Research Institute (NDMI). Development of Accurate Analysis Techniques for Environmental and Chemical Accidents(I). NDMI.; 2022
  15. National Disaster Management Research Institute (NDMI). Development of field investigation and ensemble simulation technology for chemical accident. NDMI.; 2018. p. 37-40
  16. National Institute of Chemical Safety(NICS). Hydrochloric acid storage tank leakage accident case, NICSGP2021-12. NICS.; 2021. p. 6-13
  17. National Institute of Chemical Safety(NICS) [Internet]. c2021. Intergrated chemical information system; [2023.1.31.]. Available from: http://icis.me.go.kr/pageLink.do
  18. National Research Council of the National Academies (NRC). Acute Exposure Guideline Levels for Selected Airborne Chemicals, Volume 4. The National Academies Press.; 2004. p. 100-108
  19. Occupational Safety & Health Research Institute(OSHRI). A Research on Prevention of Chemical Accident utilizing Simulation Techniques. OSHRI.; 2014.
  20. Qiao A, Zhang S. Advanced CFD modeling on vapor dispersion and vapor cloud explosion. J Loss Prev Process Ind 2010;23(6):843-848(https://doi.org/10.1016/j.jlp.2010.06.006)
  21. Sergejchik SA, Nikolajchuk AM. Absorption of hydrogen chloride by leaves of trees and shrubs of different species. National Academy of Sciences of Belarus. Vestsi Natsyyanal'naj Akadehmii Navuk Belarusi. Seryya Biyalagichnykh Navuk.; 2008. p.10-14
  22. The Netherlands Organization of Applied Scientific Research(TNO). Methods for the calculation of physical effects, 3th Edition. TNO.; 2005. p. 3-26-28
  23. Woodward JL, Pitbaldo R. LNG risk-based safety; modeling and consequence analysis. John Wiley and Sons Inc.; 2010. p. 374
  24. Yoon CS. Criteria for chemical emergency(leak, accident), Monthly Occupational&Health 339. Korea Industrial Health Association.; 2016. p. 22-31