DOI QR코드

DOI QR Code

Numerical analysis for the punching shear resistance of SFRC flat slabs

  • Baraa J.M. AL-Eliwi (Department of Civil Engineering, College of Engineering, University of Mosul) ;
  • Mohammed S. Al Jawahery (Highways and Bridges Engineering Department, Technical College of Engineering, Duhok Polytechnic University)
  • 투고 : 2022.12.23
  • 심사 : 2023.06.16
  • 발행 : 2023.10.25

초록

In this article, the performance of steel fiber-reinforced concrete (SFRC) flat slabs was investigated numerically. The influence of flexural steel reinforcement, steel fiber content, concrete compressive strength, and slab thickness were discussed. The numerical model was developed using ATENA-Gid, user-friendly software for non-linear structural analysis for the evaluation and design of reinforced concrete elements. The numerical model was calibrated based on eight experimental tests selected from the literature to validate the actual behavior of steel fiber in the numerical analysis. Then, a parametric study of 144 specimens was generated and discussed the impact of various parameters on the punching shear strength, and statistical analysis was carried out. The results showed that slab thickness, steel fiber content, and concrete compressive strength positively affect the punching shear capacity. The fib Model Code 2010 for specimens without steel fibers and the model of Muttoni and Ruiz for SFRC specimens presented a good agreement with the results of this study.

키워드

과제정보

The research described in this paper was not financially supported by any person or institute.

참고문헌

  1. Abbass, W., Khan, M.I. and Mourad, S. (2018), "Evaluation of mechanical properties of steel fiber reinforced concrete with different strengths of concrete", Constr. Build. Mater., 168, 556-569. https://doi.org/10.1016/j.conbuildmat.2018.02.164.
  2. ACI318-19 (2019), Building Code Requirements for Structural Concrete (ACI 318-19), American Concrete Institute, Farmington Hills, MI, USA.
  3. Afefy, H.M. and El-Tony, E.T.M. (2019), "Retrofitting of interior slab-to-column connections for punching shear using different techniques", J. Perform. Constr. Facil., 33(1), 04018088. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001246.
  4. Al Jawahery, M.S., Cevik, A. and Gulsan, M.E. (2022), "3D FE modeling and parametric analysis of steel fiber reinforced concrete haunched beams", Adv. Concrete Constr., 13(1), 45-69. https://doi.org/10.12989/acc.2022.13.1.045.
  5. Al Jawahery, M.S., Gulsan, M.E., Albegmprli, H.M. and Cevik, A. (2021), "Comprehensive shear and flexural study: Experimental and FE modeling of RC haunched beams rehabilitated by basalt fabric", Iran. J. Sci. Technol. Trans. Civil Eng., 46, 1887-1914. https://doi.org/10.1007/s40996-021-00741-5.
  6. Al Jawahery, M.S., Gulsan, M.E., Albegmprli, H.M., Mansoori, I.A.H. and Cevik, A. (2019), "Experimental investigation of rehabilitated RC haunched beams via CFRP with 3D-FE modeling analysis", Eng. Struct., 196, 109301. https://doi.org/10.1016/j.engstruct.2019.109301.
  7. Alkroosh, I. and Ammash, H. (2015), "Soft computing for modeling punching shear of reinforced concrete flat slabs", Ain Shams Eng. J., 6(2), 439-448. https://doi.org/10.1016/j.asej.2014.12.001.
  8. Alrousan, R.Z. and Bara'a, R.A. (2022), "Punching shear behavior of FRP reinforced concrete slabs under different opening configurations and loading conditions", Case Stud. Constr. Mater., 17, e01508. https://doi.org/10.1016/j.cscm.2022.e01508.
  9. Ammash, H.K., Kadhim, S.S. and Dhahir, M.K. (2022), "Repairing half-loaded flat slabs against punching shear using steel stiffeners", Case Stud. Constr. Mater., 16, e01032. https://doi.org/10.1016/j.cscm.2022.e01032.
  10. Antony, J. (2014), Design of Experiments for Engineers and Scientists, Elsevier, Amsterdam, Netherlands.
  11. Baghi, H. and Menkulasi, F. (2020), "Alternative approaches to predict shear strength of slender RC beams strengthened with externally bonded fiber-reinforced polymer laminates", J. Compos. Constr., 24(2), 04020002. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001003. 
  12. Barros, J.A., Neto, B.N.M., Melo, G.S. and Frazao, C.M. (2015), "Assessment of the effectiveness of steel fibre reinforcement for the punching resistance of flat slabs by experimental research and design approach", Compos. Part B: Eng., 78, 8-25. https://doi.org/10.1016/j.compositesb.2015.03.050.
  13. Boulekbache, B., Hamrat, M., Chemrouk, M. and Amziane, S. (2012), "Influence of yield stress and compressive strength on direct shear behaviour of steel fibre-reinforced concrete", Constr. Build. Mater., 27(1), 6-14. https://doi.org/10.1016/j.conbuildmat.2011.07.015.
  14. Cervenka, V., Cervenka, J., Janda, Z. and Pryl, D. (2017), ATENA Program Documentation, Part 8: User's Manual for ATENA-GiD Interface, Cervenka Consulting, Prague, Czech Republic.
  15. Cervenka, V., Jendele, L. and Cervenka, J. (2016), ATENA Program Documentation, Part 1: Theory, Cervenka Consulting, Prague, Czech Republic.
  16. Cervenka, V., Jendele, L. and Cervenka, J. (2021), ATENA Program Documentation-Part 1, Cervenka Consulting, Prague, Czech Republic.
  17. Cervenka, V., Rimkus, A., Gribniak, V. and Cervenka, J. (2022), "Simulation of the crack width in reinforced concrete beams based on concrete fracture", Theoret. Appl. Fract. Mech., 121, 103428. https://doi.org/10.1016/j.tafmec.2022.103428.
  18. Choi, K.K., Taha, M.M.R., Park, H.G. and Maji, A.K. (2007), "Punching shear strength of interior concrete slab-column connections reinforced with steel fibers", Cement Concrete Compos., 29(5), 409-420. https://doi.org/10.1016/j.cemconcomp.2006.12.003.
  19. Collins, M.P. (2001), "Evaluation of shear design procedures for concrete structures", A Report Prepared for the CSA Technical Committee on Reinforced Concrete Design, CSA Technical Committee, Toronto,ON, Canada.
  20. Consulting, C. (2020), ATENA for Non-linear Finite Element Analysis of Reinforced Concrete Structures, Cervenka Consulting, Prague, Czech Republic. https://www.cervenka.cz/company/
  21. de Azevedo Palhares, R., Weitzel Rossignoli, F., Sales de Melo, G. and Jorge Nery de Lima, H. (2022), "A numerical model capable of accurately simulating the punching shear behavior of a reinforced concrete slab", Struct. Concrete, 23(2), 1134-1150. https://doi.org/10.1002/suco.202100773.
  22. Einpaul, J., Bujnak, J., Fernandez Ruiz, M. and Muttoni, A. (2016), "Study on influence of column size and slab slenderness on punching strength", ACI Struct. J., 113(ARTICLE), 135-145. https://doi.org/10.14359/51687945.
  23. Elsamak, G. and Fayed, S. (2020), "Parametric studies on punching shear behavior of RC flat slabs without shear reinforcement", Comput. Concrete, 25(4), 355-367. https://doi.org/10.12989/cac.2020.25.4.355.
  24. Eurocode2 (2004), Eurocode 2: Design of Concrete Structures-Part 1-1: General Rules and Rules for Buildings, CEN-CENELEC, Brussels, Belgium.
  25. Farzam, M. and Sadaghian, H. (2018), "Mechanical model for punching shear capacity of rectangular slab-column connections", Struct. Concrete, 19(6), 1983-1991. https://doi.org/10.1002/suco.201700213.
  26. fib (2013), fib Model Code for Concrete Structures 2010, fib, Lausanne, Switzerland.
  27. Genikomsou, A.S. and Polak, M.A. (2015), "Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS", Eng. Struct., 98, 38-48. https://doi.org/10.1016/j.engstruct.2015.04.016.
  28. Goh, C.Y.M. and Hrynyk, T.D. (2018), "Numerical investigation of the punching resistance of reinforced concrete flat plates", J. Struct. Eng., 144(10), 04018166. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002142.
  29. Gouveia, N.D., Fernandes, N.A., Faria, D.M., Ramos, A.M. and Lucio, V.J. (2014), "SFRC flat slabs punching behaviour-Experimental research", Compos. Part B: Eng., 63, 161-171. https://doi.org/10.1016/j.compositesb.2014.04.005.
  30. Gouveia, N.D., Lapi, M., Orlando, M., Faria, D.M. and Ramos, A.M.P. (2018), "Experimental and theoretical evaluation of punching strength of steel fiber reinforced concrete slabs", Struct. Concrete, 19(1), 217-229. https://doi.org/10.1002/suco.201700136.
  31. Gulsan, M.E., Alzeebaree, R., Rasheed, A.A., Nis, A. and Kurtoglu, A.E. (2019), "Development of fly ash/slag based self-compacting geopolymer concrete using nano-silica and steel fiber", Constr. Build. Mater., 211, 271-283. https://doi.org/10.1016/j.conbuildmat.2019.03.228.
  32. Harajli, M., Maalouf, D. and Khatib, H. (1995), "Effect of fibers on the punching shear strength of slab-column connections", Cement Concrete Compos., 17(2), 161-170. https://doi.org/10.1016/0958-9465(94)00031-S.
  33. Higashiyama, H., Ota, A. and Mizukoshi, M. (2011), "Design equation for punching shear capacity of SFRC slabs", Int. J. Concrete Struct. Mater., 5(1), 35-42. https://doi.org/10.4334/IJCSM.2011.5.1.035
  34. Hu, H., Wang, Z., Figueiredo, F.P., Papastergiou, P., Guadagnini, M. and Pilakoutas, K. (2019), "Postcracking tensile behavior of blended steel fiber-reinforced concrete", Struct. Concrete, 20(2), 707-719. https://doi.org/10.1002/suco.201800100.
  35. Inacio, M.M., Lapi, M. and Ramos, A.P. (2020), "Punching of reinforced concrete flat slabs-Rational use of high strength concrete", Eng. Struct., 206, 110194. https://doi.org/10.1016/j.engstruct.2020.110194.
  36. Job, T. and Ananth, R. (2007), "Mechanical properties of steel fiber-reinforced concrete", J. Mater. Civil Eng., 19(5), 385-392. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:5(385).
  37. Ju, H., Cheon, N.R., Lee, D.H., Oh, J.Y., Hwang, J.H. and Kim, K.S. (2015), "Consideration on punching shear strength of steel-fiber-reinforced concrete slabs", Adv. Mech. Eng., 7(5), 1687814015584251. https://doi.org/10.1177/1687814015584251.
  38. Kannam, P. and Sarella, V.R. (2018), "A study on validation of shear behaviour of steel fibrous SCC based on numerical modelling (ATENA)", J. Build. Eng., 19, 69-79. https://doi.org/10.1016/j.jobe.2018.05.003.
  39. Kumar, V.P. and Prasad, E. (2022), "A study on validation of moment-curvature relationship of lime sludge-based blended cement concrete on numerical modeling (ATENA)", Struct., 45, 1729-1737. https://doi.org/10.1016/j.istruc.2022.10.013.
  40. Madkour, H., Abd-Elraheem, S.R. and Ali, O. (2021), "Numerical damage investigation for RC slab-column connections", Ain Shams Eng. J., 12(1), 241-258. https://doi.org/10.1016/j.asej.2020.06.010.
  41. Mahmoud, A.M. (2015), "Finite element implementation of punching shear behaviors in shear-reinforced flat slabs", Ain Shams Eng. J., 6(3), 735-754. https://doi.org/10.1016/j.asej.2014.12.015.
  42. Marzouk, H. and Hussein, A. (1992), "Experimental investigation on the behavior of high-strength concrete slabs", Struct. J., 88(6), 701-713. https://doi.org/10.14359/1261.
  43. Maya, L., Ruiz, M.F., Muttoni, A. and Foster, S. (2012), "Punching shear strength of steel fibre reinforced concrete slabs", Eng. Struct., 40, 83-94. https://doi.org/10.1016/j.engstruct.2012.02.009.
  44. Menetrey, P. and Willam, K. (1995), "Triaxial failure criterion for concrete and its generalization", Struct. J., 92(3), 311-318. https://doi.org/10.14359/1132.
  45. Michels, J., Waldmann, D., Maas, S. and Zurbes, A. (2012), "Steel fibers as only reinforcement for flat slab construction-Experimental investigation and design", Constr. Build. Mater., 26(1), 145-155. https://doi.org/10.1016/j.conbuildmat.2011.06.004. 
  46. Milligan, G.J., Anna Polak, M. and Zurell, C. (2021), "Impact of column rectangularity on punching shear strength: Code predictions versus finite element analysis", J. Struct. Eng., 147(2), 04020331. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002889.
  47. Milligan, G.J., Polak, M.A. and Zurell, C. (2020), "Finite element analysis of punching shear behaviour of concrete slabs supported on rectangular columns", Eng. Struct., 224, 111189. https://doi.org/10.1016/j.engstruct.2020.111189.
  48. Moraes-Neto, B.N., Barros, J.A. and Melo, G.S. (2014), "A model to simulate the contribution of fibre reinforcement for the punching resistance of RC slabs", J. Mater. Civil Eng., 26(7), 04014020. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000913.
  49. Muttoni, A. (2008), "Punching shear strength of reinforced concrete slabs without transverse reinforcement", ACI Struct. J., 105, 440-450. https://doi.org/10.14359/19858.
  50. Muttoni, A. and Ruiz, F.M. (2010), "MC2010: The critical shear crack theory as a mechanical model for punching shear design and its application to code provisions", Federation Internationale du Beton, Bulletin, 57, 31-60. https://doi.org/10.35789/fib.BULL.0057.Ch03
  51. Muttoni, A. and Ruiz, M.F. (2012), "The levels-of-approximation approach in MC 2010: Application to punching shear provisions", Struct. Concrete, 13(1), 32-41. https://doi.org/10.1002/suco.201100032.
  52. Narayanan, R. and Darwish, I. (1987), "Punching shear tests on steel-fibre-reinforced micro-concrete slabs", Mag. Concrete Res., 39(138), 42-50. https://doi.org/10.1680/macr.1987.39.138.42.
  53. Nis, A., Eren, N.A. and Cevik, A. (2021), "Effects of nanosilica and steel fibers on the impact resistance of slag based self-compacting alkali-activated concrete", Ceram. Int., 47(17), 23905-23918. https://doi.org/10.1016/j.ceramint.2021.05.099.
  54. Nis, A., Eren, N.A. and Cevik, A. (2023), "Effects of recycled tyre rubber and steel fibre on the impact resistance of slag-based self-compacting alkali-activated concrete", Eur. J. Environ. Civil Eng., 27(1), 519-537. https://doi.org/10.1080/19648189.2022.2052967.
  55. Nis, A., Ozyurt, N. and Ozturan, T. (2020), "Variation of flexural performance parameters depending on specimen size and fiber properties", J. Mater. Civil Eng., 32(4), 04020054. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003105.
  56. Ozden, S., Ersoy, U. and Ozturan, T. (2006), "Punching shear tests of normal-and high-strength concrete flat plates", Can. J. Civil Eng., 33(11), 1389-1400. https://doi.org/10.1139/l06-089.
  57. Rashid, K. and Balouch, N. (2017), "Influence of steel fibers extracted from waste tires on shear behavior of reinforced concrete beams", Struct. Concrete, 18(4), 589-596. https://doi.org/10.1002/suco.201600194.
  58. Sadaghian, H. and Farzam, M. (2019), "Numerical investigation on punching shear of RC slabs exposed to fire", Comput. Concrete, 23(3), 217-233. https://doi.org/10.12989/cac.2019.23.3.217.
  59. Saleh, H., Kalfat, R., Abdouka, K. and Al-Mahaidi, R. (2018), "Experimental and numerical study into the punching shear strengthening of RC flat slabs using post-installed steel bolts", Constr. Build. Mater., 188, 28-39. https://doi.org/10.1016/j.conbuildmat.2018.08.064.
  60. Schmidt, P., Kueres, D. and Hegger, J. (2020), "Punching shear behavior of reinforced concrete flat slabs with a varying amount of shear reinforcement", Struct. Concrete, 21(1), 235-246. https://doi.org/10.1002/suco.201900017.
  61. Shaaban, I.G., Said, M., Khan, S.U., Eissa, M. and Elrashidy, K. (2021), "Experimental and theoretical behaviour of reinforced concrete beams containing hybrid fibres", Struct., 32, 2143-2160. https://doi.org/10.1016/j.istruc.2021.04.021.
  62. Shatarat, N. and Salman, D. (2022), "Investigation of punching shear behavior of flat slabs with different types and arrangements of shear reinforcement", Case Stud. Constr. Mater., 16, e01028. https://doi.org/10.1016/j.cscm.2022.e01028.
  63. Tan, K.H. and Paramasivam, P. (1994), "Punching shear strength of steel fiber reinforced concrete slabs", J. Mater. Civil Eng., 6(2), 240-253. https://doi.org/10.1061/(ASCE)0899-1561(1994)6:2(240).
  64. Teixeira, M.D., Barros, J.A., Cunha, V.M., Moraes-Neto, B.N. and Ventura-Gouveia, A. (2015), "Numerical simulation of the punching shear behaviour of self-compacting fibre reinforced flat slabs", Constr. Build. Mater., 74, 25-36. https://doi.org/10.1016/j.conbuildmat.2014.10.003.