DOI QR코드

DOI QR Code

Design of intelligent computing networks for a two-phase fluid flow with dusty particles hanging above a stretched cylinder

  • Tayyab Zamir (Department of Mathematics, COMSATS University Islamabad, Attock Campus) ;
  • Farooq Ahmed Shah (Department of Mathematics, COMSATS University Islamabad, Attock Campus) ;
  • Muhammad Shoaib (Department of Mathematics, COMSATS University Islamabad, Attock Campus) ;
  • Atta Ullah (Department of Mathematics, COMSATS University Islamabad, Attock Campus)
  • 투고 : 2023.04.01
  • 심사 : 2023.06.14
  • 발행 : 2023.10.25

초록

This study proposes a novel use of backpropagated Levenberg-Marquardt neural networks based on computational intelligence heuristics to comprehend the examination of hybrid nanoparticles on the flow of dusty liquid via stretched cylinder. A two-phase model is employed in the present work to describe the fluid flow. The use of desulphated nanoparticles of silver and molybdenum suspended in water as base fluid. The mathematical model represented in terms of partial differential equations, Implementing similarity transformationsis model is converted to ordinary differential equations for the analysis . By adjusting the particle mass concentration and curvature parameter, a unique technique is utilized to generate a dataset for the proposed Levenberg-Marquardt neural networks in various nanoparticle circumstances on the flow of dusty liquid via stretched cylinder. The intelligent solver Levenberg-Marquardt neural networks is trained, tested and verified to identify the nanoparticles on the flow of dusty liquid solution for various situations. The Levenberg-Marquardt neural networks approach is applied for the solution of the hybrid nanoparticles on the flow of dusty liquid via stretched cylinder model. It is validated by comparison with the standard solution, regression analysis, histograms, and absolute error analysis. Strong agreement between proposed results and reference solutions as well as accuracy provide an evidence of the framework's validity.

키워드

참고문헌

  1. Abbas, N., Nadeem, S., Saleem, A., Malik, M., Issakhov, A. and Alharbi, F.M. (2021), "Models base study of inclined MHD of hybrid nanofluid flow over nonlinear stretching cylinder", Chin. J. Phys., 69, 109-117. https://doi.org/10.1016/j.cjph.2020.11.019.
  2. Abdelmalek, Z., Nawaz, M. and Elmasry, Y. (2020), "Simultaneous impact of hybrid nano and dust particles on enhancement of heat transfer in fluid with micro-rotation and thermal memory effects", Int. Commun. Heat Mass Transf., 118, 1-9. https://doi.org/10.1016/j.icheatmasstransfer.2020.104871.
  3. Ahmad, I., Raja, M.A.Z., Bilal, M. and Ashraf, F. (2016), "Bioinspired computational heuristics to study lane-emden systems arising in astrophysics model", SpringerPlus, 5, 1-23. https://doi.org/10.1186/s40064-016-3517-2.
  4. Ahmad, S.I., Faisal, F., Shoaib, M. and Raja, M.A.Z. (2020), "A new heuristic computational solver for nonlinear singular thomas-fermi system using evolutionary optimized cubic splines", Eur. Phys. J. Plus, 135(1), 55. https://doi.org/10.1140/epjp/s13360-019-00066-3.
  5. Ahmad, I., Raja, M.A.Z., Ramos, H., Bilal, M. and Shoaib, M. (2021), "Integrated neuro-evolutionbased computing solver for dynamics of nonlinear corneal shape model numerically", Neural Comput. Appl., 33, 5753-5769. https://doi.org/10.1007/s00521-020-05355.
  6. Al-Hossainy, A.F., Eid, M.R. and Zoromba, M.S. (2019), "SQLM for external yield stress effect on 3D MHD nanofluid flow in a porous medium", Phys. Script., 94(10), 105208. https://doi.org/10.1088/1402-4896/ab2413.
  7. Anwar, N., Shoaib, M., Ahmad, I., Naz, S., Kiani, A.K. and Raja, M.A.Z. (2023), "Intelligent computing networks for nonlinear influenza-A epidemic model", Int. J. Biomathemat., 16(4), 2250097. https://doi.org/10.1142/S1793524522500978.
  8. Beven, K.J. (2000), "Uniqueness of place and process representations in hydrological modelling", Hydrol. Earth Syst. Sci., 4(2), 203-213. https://doi.org/10.5194/hess-4-203-2000.
  9. Bukhari, A.H., Raja, M.A.Z., Sulaiman, M., Islam, S., Shoaib, M. and Kumam, P. (2020), "Fractional neuro-sequential ARFIMALSTM for financial market forecasting", IEEE Access, 8, 71326-71338. https://doi.org/10.1109/ACCESS.2020.2985763.
  10. Eid, M.R., Alsaedi, A., Muhammad, T. and Hayat, T. (2017), "Comprehensive analysis of heat transfer of gold-blood nanofluid (sisko-model) with thermal radiation", Result. Phys., 7, 4388-4393. https://doi.org/10.1016/j.rinp.2017.11.004.
  11. Eid, M.R., Mahny, K.L., Muhammad, T. and Sheikholeslami, M. (2018), "Numerical treatment for carreau nanofluid flow over a porous nonlinear stretching surface", Result. Phys., 8, 1185-1193. https://doi.org/10.1016/j.rinp.2018.01.070.
  12. Farooq, S., Khan, M.I., Waqas, M., Hayat, T. and Alsaedi, A. (2020), "Transport of hybrid type nanomaterials in peristaltic activity of viscous fluid considering nonlinear radiation, entropy optimization and slip effects", Comput. Method. Program. Biomed., 184, 105086. https://doi.org/10.1016/j.cmpb.2019.105086.
  13. Freer, J., Beven, K. and Ambroise, B. (1996), "Bayesian estimation of uncertainty in runoff prediction and the value of data: An application of the glue approach", Water Resour. Res., 32(7), 2161-2173. https://doi.org/10.1029/95WR03723.
  14. Hammal, S., Bourahla, N. and Laouami, N. (2020), "Neural-network based prediction of inelastic response spectra", Civil Eng. J., 6(6), 1124-1135. https://doi.org/10.28991/cej-2020-03091534.
  15. Hayat, T., Qayyum, S., Alsaedi, A. and Shafiq, A. (2016), "Inclined magnetic field and heat source/sink aspects in flow of nanofluid with nonlinear thermal radiation", Int. J. Heat Mass Transf., 103, 99-107. https://doi.org/10.1016/j.ijheatmasstransfer.2016.06.055.
  16. Imran, A., Akhtar, R., Zhiyu, Z., Shoaib, M. and Zahoor Raja, M.A. (2019), "Mhd and heat transfer analyses of a fluid flow through scraped surface heat exchanger by analytical solver", AIP Adv., 9(7), 075201. https://doi.org/10.1063/1.5099999.
  17. Imran, A., Raja, M.A.Z., Shoaib, M., Zeb, M. and Nisar, K.S. (2023), "Electro-osmotic transport of a williamson fluid within a ciliated microchannel with heat transfer analysis", Case Stud. Therm. Eng., 45, 102904. https://doi.org/10.1016/j.csite.2023.102904.
  18. Khan, I., Raja, M.A.Z., Shoaib, M., Kumam, P., Alrabaiah, H., Shah, Z. and Islam, S. (2020), "Design of neural network with levenberg-marquardt and bayesian regularization backpropagation for solving pantograph delay differential equations", IEEE Access, 8, 137918-137933. https://doi.org/10.1109/ACCESS.2020.3011820.
  19. Khan, J.A., Mustafa, M., Hayat, T., Turkyilmazoglu, M. and Alsaedi, A. (2017), "Numerical study of nanofluid flow and heat transfer over a rotating disk using buongiorno's model", Int. J. Numer. Method. Heat Fluid Flow, 27(1), 221-234. https://doi.org/10.1108/HFF-08-2015-0328.
  20. Kuttan, B.A., Manjunatha, S., Jayanthi, S. and Gireesha, B. (2020), "Performance of four different nanoparticles in boundary layer flow over a stretching sheet in porous medium driven by buoyancy force", Int. J. Appl. Mech. Eng., 25(2), 1-10. https://doi.org/10.2478/ijame-2020-0016.
  21. Li, M., Wang, S., Gao, H., Yin, Z., Chen, C., Yang, H., Fang, L., Angadi Veerabhadrappa, J., Yi, Z. and Li, D. (2023), "Selective removal of antibiotics over MgAl2O4/C3N4/YMnO3 photocatalysts: Performance prediction and mechanism insight", J. Am. Ceramic Soc., 106(4), 2420-2442. https://doi.org/10.1111/jace.18946.
  22. Mallikarjuna, H.B., Nirmala, T., Punith Gowda, R.J., Manghat, R. and Varun Kumar, R.S. (2021), "Twodimensional darcy-forchheimer flow of a dusty hybrid nanofluid over a stretching sheet with viscous dissipation", Heat Transf., 50(4), 3934-3947. https://doi.org/ 10.1002/htj.22058.
  23. Manjunatha, P., Gireesha, B. and Prasannakumara, B. (2017), "Effect of radiation on flow and heat transfer of mhd dusty fluid over a stretching cylinder embedded in a porous medium in presence of heat source", Int. J. Appl. Comput. Mathemat., 3, 293-310. https://doi.org/10.1007/s40819-015-0107-x.
  24. Manjunatha, S., Ammani Kuttan, B., Ramesh, G., Gireesha, B. and Aly, E.H. (2020), "3D flow and heat transfer of micropolar fluid suspended with mixture of nanoparticles (Ag-CuO/H2O) driven by an exponentially stretching surface", Multidiscipl. Model. Mater. Struct., 16(6), 1691-1707. https://doi.org/10.1108/MMMS-12-2019-0226.
  25. Mondal, H., Das, S. and Kundu, P.K. (2020), "Influence of an inclined stretching cylinder over mhd mixed convective nanofluid flow due to chemical reaction and viscous dissipation", Heat Transf., 49(4), 2183-2193. https://doi.org/10.1002/htj.21714.
  26. Nisar, K.S., Shoaib, M., Raja, M.A.Z., Tabassum, R. and Morsy, A. (2023), "A novel design of evolutionally computing to study the quarantine effects on transmission model of ebola virus disease", Result. Phys., 48, 106408. https://doi.org/10.1016/j.rinp.2023.106408.
  27. Pfister, L., Kwadijk, J., Musy, A., Bronstert, A. and Hoffmann, L. (2004), "Climate change, land use change and runoff prediction in the rhine-meuse basins", River Res. Appl., 20(3), 229-241. https://doi.org/10.1002/rra.775.
  28. Pisani, L., Chan, J., Montanari, B. and Harrison, N. (2007), "Electronic structure and magnetic properties of graphitic ribbons", Phys. Review B, 75(6), 064418. https://doi.org/10.1103/PhysRevB.75.064418.
  29. Radhika, M., Punith Gowda, R., Naveenkumar, R. and Prasannakumara, B. (2021), "Heat transfer in dusty fluid with suspended hybrid nanoparticles over a melting surface", Heat Transf., 50(3), 2150- 2167. https://doi.org/10.1002/htj.21972.
  30. Reddy, M.G., Rani, M.S., Kumar, K.G., Prasannakumar, B. and Lokesh, H. (2020), "Hybrid dusty fluid flow through a cattaneo-christov heat flux model", Phys. A: Stat. Mech. Appl., 551, 123975. https://doi.org/10.1016/j.physa.2019.123975.
  31. Sabir, Z., Raja, M.A.Z., Guirao, J.L. and Shoaib, M. (2020), "Integrated intelligent computing with neuro-swarming solver for multi-singular fourth-order nonlinear emden-fowler equation", Comput. Appl. Mathemat., 39, 1-18. https://doi.org/10.1007/s40314-020-01330-4.
  32. Sabir, Z., Wahab, H.A., Umar, M., Sakar, M.G. and Raja, M.A.Z. (2020), "Novel design of morlet wavelet neural network for solving second order lane-emden equation", Mathemat. Comput. Simulat., 172, 1-14. https://doi.org/10.1016/j.matcom.2020.01.005.
  33. Shafiq, A., C, Olak, A.B. and Naz Sindhu, T. (2021), "Designing artificial neural network of nanoparticle diameter and solid-fluid interfacial layer on single-walled carbon nanotubes/ethylene glycol nanofluid flow on thin slendering needles", Int. J. Numer. Method. Fluid., 93(12), 3384-3404. https://doi.org/10.1002/fld.5038.
  34. Shafiq, A., Colak, A.B. and Sindhu, T.N. (2022a), "Modeling of soret and dufour's convective heat transfer in nanofluid flow through a moving needle with artificial neural network", Arab. J. Sci. Eng., 48(3), 2807-2820. https://doi.org/10.1007/s13369-022-06945-9.
  35. Shafiq, A., Colak, A.B. and Sindhu, T.N. (2022b), "Significance of bioconvective flow of mhd thixotropic nanofluid passing through a vertical surface by machine learning algorithm", Chin. J. Phys., 80, 427-444. https://doi.org/10.1016/j.cjph.2022.08.008.
  36. Shafiq, A., Colak, A. B. and Sindhu, T. N. (2023a), "Optimization of the numerical treatment of the darcy-forchheimer flow of reeeyring fluid with chemical reaction by using artificial neural networks", Int. J. Numer. Method. Fluid., 95(1), 176-192. https://doi.org/10.1002/fld.5147.
  37. Shafiq, A., Colak, A.B. and Sindhu, T.N. (2023b), "Significance of emhd graphene oxide (go) water ethylene glycol nanofluid flow in a darcy-forchheimer medium by machine learning algorithm", Eur. Phys. J. Plus, 138(3), 213.https://doi.org/10.1140/epjp/s13360-023-03798-5.
  38. Shoaib, M., Anwar, N., Ahmad, I., Naz, S., Kiani, A.K. and Raja, M.A.Z. (2023), "Neuro computational intelligence for numerical treatment of multiple delays seir model of worms propagation in wireless sensor networks", Biomed. Signal Pr. Control, 84, 104797. https://doi.org/10.1016/j.bspc.2023.104797.
  39. Shoaib, M., Nisar, K.S., Raja, M.A.Z., Abbasi, A.Z., Tabassum, R. and Rafiq, A. (2023), "Stochastic numerical computing for hydro-magnetic flow of carreau-nanofluid model", Wave. Random Complex Media, 2023, 1-20. https://doi.org/10.1080/17455030.2023.2205955.
  40. Kumar, R.V, Gowda, R.P., Kumar. N.R., Radhika, M. and Prasannakumara, B. (2021), "Two-phase flow of dusty fluid with suspended hybrid nanoparticles over a stretching cylinder with modified fourier heat flux", SN Appl. Sci., 3, 1-9. https://doi.org/10.1007/s42452-021-04364-3.
  41. Vinita, V. and Poply, V. (2020), "Impact of outer velocity mhd slip flow and heat transfer of nanofluid past a stretching cylinder", Mater. Today: Proc., 26, 3429-3435. https://doi.org/10.1016/j.matpr.2019.11.304.
  42. Waseem, W., Sulaiman, M., Islam, S., Kumam, P., Nawaz, R., Raja, M.A.Z., Farooq, M. and Shoaib, M. (2020), "A study of changes in temperature profile of porous fin model using cuckoo search algorithm", Alexandria Eng. J., 59(1), 11-24. https://doi.org/10.1016/j.aej.2019.12.001.