Acknowledgement
The authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research groups program under grant number R.G.P. 2/34/44.
References
- Ansari, R. and Arash, B. (2013), "Nonlocal Flugge shell model for vibrations of double-walled carbon nanotubes with different boundary conditions", J. Appl. Mech., 80(2), 021006. https://doi.org/10.1115/1.4007432.
- Ansari, R. and Rouhi, H. (2015), "Nonlocal Flugge shell model for the axial buckling of single-walled carbon nanotubes: An analytical approach", Int. J. Nano Dimens., 6(5), 453-462. https://doi.org/10.7508/ijnd.2015.05.002.
- Bilouei, B.S., Kolahchi, R. and Bidgoli, M.R. (2016), "Buckling of concrete columns retrofitted with nano-fiber reinforced polymer (NFRP)", Comput. Concrete, 18(5), 1053-1063. https://doi.org/10.12989/cac.2016.18.6.1053.
- Chalak, H.D., Zenkour, A.M. and Garg, A. (2021), "Free vibration and modal stress analysis of FG-CNTRC beams under hygrothermal conditions using zigzag theory", Mech. Based Des. Struct. Mach., 51(8), 4709-4730. https://doi.org/10.1080/15397734.2021.1977659.
- Del Rosario, R.C. and Smith, R.C. (1997), "Spline approximation of thin shell dynamics", Int. J. Numer. Method. Eng., 20, 2807-2840. https://ntrs.nasa.gov/citations/19960022271. https://doi.org/10.1002/(SICI)1097-0207(19970815)40:15<2807::AID-NME192>3.0.CO;2-H
- Ehyaei, J. and Daman, M. (2017), "Free vibration analysis of double walled carbon nanotubes embedded in an elastic medium with initial imperfection", Adv. Nano Res., 5(2), 179-192. https://doi.org/10.12989/anr.2017.5.2.179.
- Garg, A., Chalak, H.D., Belarbi, M.O., Zenkour, A.M. and Sahoo, R. (2021), "Estimation of carbon nanotubes and their applications as reinforcing composite materials-An engineering review", Compos. Struct., 272, 114234. https://doi.org/10.1016/j.compstruct.2021.114234.
- Garg, A., Chalak, H.D., Zenkour, A.M., Belarbi, M.O. and Sahoo, R. (2022a), "Bending and free vibration analysis of symmetric and unsymmetric functionally graded CNT reinforced sandwich beams containing softcore", Thin Wall. Struct., 170, 108626. https://doi.org/10.1016/j.tws.2021.108626.
- Garg, A., Mukhopadhyay, T., Chalak, H.D., Belarbi, M.O., Li, L. and Sahoo, R. (2022b), "Multiscale bending and free vibration analyses of functionally graded graphene platelet/fiber composite beams", Steel Compos. Struct., 44(5), 707-720. https://doi.org/10.12989/scs.2022.44.5.707.
- Golabchi, H., Kolahchi, R. and Bidgoli, M.R. (2018), "Vibration and instability analysis of pipes reinforced by SiO2 nanoparticles considering agglomeration effects", Comput. Concrete, 21(4), 431-440. https://doi.org/10.12989/cac.2018.21.4.431.
- Gupta, S.S., Bosco, F.G. and Batra, R.C. (2010), "Wall thickness and elastic moduli of single-walled carbon nanotubes from frequencies of axial, torsional and inextensional modes of vibration", Comput. Mater. Sci., 47(4), 1049-1059. https://doi.org/10.1016/j.commatsci.2009.12.007.
- Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0.
- Jena, S.K., Chakraverty, S., Malikan, M. and Tornabene, F. (2021), "Stability analysis of single-walled carbon nanotubes embedded in winkler foundation placed in a thermal environment considering the surface effect using a new refined beam theory", Mech. Based Des. Struct. Mach., 49(4), 581-595. https://doi.org/10.1080/15397734.2019.1698437.
- Jorio, A., Saito, R., Hafner, J.H., Lieber, C.M., Hunter, D.M., McClure, T. and Dresselhaus, M.S. (2001), "Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering", Phys. Rev. Lett., 86(6), 1118. https://doi.org/10.1103/PhysRevLett.86.1118.
- Kiani, K. (2014), "Vibration and instability of a single-walled carbon nanotube in a three dimensional magnetic field", J. Phys. Chem. Solid., 75(1), 15-22. https://doi.org/10.1016/j.jpcs.2013.07.022.
- Kim, P., Shi, L., Majumdar, A. and McEuen, P.L. (2001), "Thermal transport measurements of individual multi-walled nanotubes", Phys. Rev. Lett., 87(21), 2155021-2155024. https://doi.org/10.1103/PhysRevLett.87.215502.
- Lal, A. and Markad, K. (2018), "Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams", Comput. Concrete, 22(6), 501-514. https://doi.org/10.12989/cac.2018.22.6.501.
- Lee, H.L. and Chang, W.J. (2009), "Vibration analysis of fluid-conveying double-walled carbon nanotubes based on nonlocal elastic theory", J. Phys.: Condens. Matt., 21(11), 115302. https://doi.org/10.1088/0953-8984/21/11/115302.
- Lei, X.W., Natsuki, T., Shi, J.X. and Ni, Q.Q. (2012), "Surface effects on the vibrational frequency of double-walled carbon nanotubes using the nonlocal Timoshenko beam model", Compos. Part B: Eng., 43(1), 64-69. https://doi.org/10.1016/j.compositesb.2011.04.032.
- Leissa, A.W. (1973), Vibration of Shells, Scientific and Technical Information Office, National Aeronautics and Space Administration, Washington D.C., USA.
- Li, C. and Chou, T.W. (2003), "A structural mechanics approach for the analysis of carbon nanotubes", Int. J. Solid. Struct., 40(10), 2487-2499. https://doi.org/10.1016/S0020-7683(03)00056-8.
- Loghman, A., Arani, A.G. and Barzoki, A.A.M. (2017), "Nonlinear stability of non-axisymmetric functionally graded reinforced nano composite microplates", Comput. Concrete, 19(6), 677-687. https://doi.org/10.12989/cac.2017.19.6.677.
- Lordi, V. and Yao. N. (1998), "Young's modulus of single-walled carbon nanotubes", J. Appl. Phys., 84, 1939-1943. https://doi.org/10.1063/1.368323.
- Mahdavi, M.H., Jiang, L.Y. and Sun, X. (2011), "Nonlinear vibration of a double-walled carbon nanotube embedded in a polymer matrix", Phys. E: Low Dimens. Syst. Nanostruct., 43(10), 1813-1819. https://doi.org/10.1016/j.physe.2011.06.017.
- Meirovitch, L. (2002), Fundamentals of Vibrations, McGraw-Hill, New York City, NY, USA.
- Mousavi, M., Mohammadimehr, M. and Rostami, R. (2019), "Analytical solution for buckling analysis of micro sandwich hollow circular plate", Comput. Concrete, 24(3), 185-192. https://doi.org/10.12989/cac.2019.24.3.185.
- Pantano, A., Parks, D.M. and Boyce, M.C. (2004), "Mechanics of deformation of single-and multi-wall carbon nanotubes", J. Mech. Phys. Solid., 52(4), 789-821. https://doi.org/10.1016/j.jmps.2003.08.004.
- Rouhi. H., Bazdid-Vahdati, M. and Ansari, R. (2015), "Rayleigh-Ritz vibrational analysis of multi-walled carbon nanotubes based on the nonlocal Flugge shell theory", J. Compos., 2015, 1-12. https://doi.org/10.1155/2015/750392.
- Sayin, E. and Calayir, Y. (2015), "Comparison of linear and non-linear earthquake response of masonry walls", Comput. Concrete, 16(1), 17-35. https://doi.org/10.12989/cac.2015.16.1.017.
- Simsek, M. (2010), "Vibration analysis of a single-walled carbon nanotube under action of a moving harmonic load based on nonlocal elasticity theory", Physica E, 43, 182-191. https://doi.org/10.1016/j.physe.2010.07.003.
- Strozzi, M., Manevitch, L.I., Pellicano, F., Smirnov, V.V. and Shepelev, D.S. (2014), "Low-frequency linear vibrations of single-walled carbon nanotubes: Analytical and numerical models", J. Sound Vib., 333(13), 2936-2957. https://doi.org/10.1016/j.jsv.2014.01.016.
- Treacy, M.J., Ebbesen, T.W. and Gibson, J.M. (1996), "Exceptionally high Young's modulus observed for individual carbon nanotubes", Nature, 381(6584), 678-680. https://doi.org/10.1038/381678a0.
- Wang, C.Y. and Zhang, L.C. (2007), "Modeling the free vibration of single-walled carbon nanotubes", 5 th Australasian Congress on Applied Mechanics, Brisbane, Australia, December.
- Yoon, J., Ru, C.Q. and Mioduchowski, A. (2005), "Terahertz vibration of short carbon nanotubes modeled as Timoshenko beams", J. Appl. Mech., 72(1), 10-17. https://doi.org/10.1115/1.1795814.
- Zamani, A., Kolahchi, R. and Bidgoli, M.R. (2017), "Seismic response of smart nanocomposite cylindrical shell conveying fluid flow using HDQ-Newmark methods", Comput. Concrete, 20(6), 671-682. https://doi.org/10.12989/cac.2017.20.6.671.
- Zhang, C.L. and Shen, H.S. (2008), "Predicting the elastic properties of double-walled carbon nanotubes by molecular dynamics simulation", J. Phys. D: Appl. Phys., 41(5), 055404. https://doi.org/10.1088/0022-3727/41/5/055404.
- Zhang, Y.Q., Liu, G.R. and Wang, J.S. (2004), "Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression", Phys. Rev. B, 70(20), 205430. https://doi.org/10.1016/j.physleta.2006.04.026.