DOI QR코드

DOI QR Code

Computational viscoelastic modeling of strain rate effect on recycled aggregate concrete

  • Suthee Piyaphipat (Department of Civil Engineering, Rajamangala University of Technology Thunyaburi) ;
  • Boonchai Phungpaingam (Department of Civil Engineering, Rajamangala University of Technology Thunyaburi) ;
  • Kamtornkiat Musiket (Department of Civil Engineering, Rajamangala University of Technology Thunyaburi) ;
  • Yunping Xi (Department of Civil and Architectural Engineering, University of Colorado)
  • 투고 : 2022.09.19
  • 심사 : 2023.06.09
  • 발행 : 2023.10.25

초록

The mechanical properties of Recycled Aggregate Concrete (RAC) with 100 percent Recycled Coarse Aggregate (RCA) under loading rates were investigated in depth. The theoretical model was validated utilizing the RAC elastic modulus obtained from cylindrical specimens subjected to various strain rates. Viscoelastic theories have traditionally been used to describe creep and relaxation of viscoelastic materials at low strain rates. In this study, viscoelastic theories were extended to the time domain of high strain rates. The theory proposed was known as reversed viscoelastic theory. Normalized Dirichlet-Prony theory was used as an illustration, and its parameters were determined. Comparing the predicted results to the experimental data revealed a high level of concordance. This methodology demonstrated its ability to characterize the strain rate effect for viscoelastic materials, as well as its applicability for determining not only the elastic modulus for viscoelastic materials, but also their shear and bulk moduli.

키워드

과제정보

The authors greatly acknowledge resources support from Rajamangala University of Technology Thunyaburi, Thailand and University of Colorado at Boulder, USA.

참고문헌

  1. ACI Committee 209 (2008), Guide for Modeling and Calculating Shrinkage and Creep in Hardened Concrete, American Concrete Institute Committee, Farmington Hills, MI, USA.
  2. Ahmad, S.H. and Shah, S.P. (1985), "Behavior of hoop confined concrete under high strain rates", J. Proc., 82(5), 634-647. https://doi.org/10.14359/10373.
  3. Atchley, B.L. and Furr, H.L. (1967), "Strength and energy absorption capabilities of plain concrete under dynamic and static loadings", J. Proc., 64(11), 745-756.
  4. Barbero, E.J. (2013), Finite Element Analysis of Composite Materials Using Abaqus, CRC Press, Boca Raton, FL, USA.
  5. CEI Beton (1993), CEBFIPM Code 1990: Design Code, Thomas Telford Publishing, London, UK.
  6. Christensen, R. (2012), Theory of Viscoelasticity: An Introduction, 2nd Edition, Academic Press, New York, NY, USA.
  7. Dassault Systemes Simulia Corporation (2011), Abaqus 6.11, Providence, RI, USA.
  8. Domingo-Cabo, A., Lazaro, C., Lopez-Gayarre, F., SerranoLopez, M.A., Serna, P. and Castano-Tabares, J.O. (2009), "Creep and shrinkage of recycled aggregate concrete", Constr. Build. Mater., 23(7), 2545-2553. https://doi.org/10.1016/j.conbuildmat.2009.02.018.
  9. Dilger, W.H., Koch, R. and Kowalczyk, R. (1984), "Ductility of plain and confined concrete under different strain rates", J. Proc., 81(1), 73-81. https://doi.org/10.14359/10649.
  10. Erzar, B., Forquin, P., Pontiroli, C. and Buzaud, E. (2010), "Influence of aggregate size and free water on the dynamic behaviour of concrete subjected to impact loading", ICEM 14-14th International Conference on Experimental Mechanics, Poitiers, France, July.
  11. He, Z.J., Ding, M.J., Zhang, X.J. and Zhang, X.S. (2020), "The biaxial compressive mechanical properties and strength criterion of recycled aggregate concrete under different dynamic strain rates", Iran. J. Sci. Tech. Trans. Civil Eng., 45(266), 1-22. https://doi.org/10.1007/s40996-020-00507-5.
  12. Hao, Y. and Hao, H. (2011), "Numerical evaluation of the influence of aggregates on concrete compressive strength at high strain rate". Int. J. Protect. Struct., 2(2), 177-206. https://doi.org/10.1260/2041-4196.2.2.177.
  13. Hao, Y., Hao, H. and Zhang, X. (2011), "Numerical analysis of concrete material properties at high strain rate under direct tension", Int. J. Impact Eng., 39(1), 51-62. https://doi.org/10.1016/j.ijimpeng.2011.08.006.
  14. Watson, A.J. and Hughes, B. (1978), "Compressive strength and ultimate strain of concrete under impact loading", Mag. Concrete Res., 30(105), 189-199. https://doi.org/10.1680/macr.1978.30.105.189.
  15. Kwon, S., Zhao, Z. and Shah, S. (2008), "Effect of specimen size on fracture energy and softening curve of concrete: Part II. Inverse analysis and softening curve", Cement Concrete Res., 38(8), 1061-1069. https://doi.org/10.1016/j.cemconres.2008.03.014.
  16. Li, W., Luo, Z., Long, C., Wu, C., Duan, W.H. and Shah, S.P. (2016), "Effects of nanoparticle on the dynamic behaviors of recycled aggregate concrete under impact loading", Mater. Des., 112, 58-66. https://doi.org/10.1016/j.matdes.2016.09.045.
  17. Menghuan, G., Frederic, G. and Ahmed, L. (2019), "Numerical method to model the creep of recycled aggregate concrete by considering the old attached mortar", Cement Concrete Res., 118, 14-24. https://doi.org/10.1016/j.cemconres.2019.01.008.
  18. Millstein, L. and Sabnis, G.M. (1982), "Concrete strength under impact loading", Symposium on Concrete Structures Under Impact and Impulsive Loading, Berlin, Germany, June.
  19. Musiket, K., Rosendahl, M. and Xi, Y. (2016), "Fracture of recycled aggregate concrete under high loading rates", J. Mater. Civil Eng., 28(6), 04016018(1-10). http://doi.org/10.1061/(ASCE)MT.1943-5533.0001513
  20. Musiket, K., Vernerey, F. and Xi, Y. (2017), "Numeral modeling of fracture failure of recycled aggregate concrete beams under high loading rates", Int. J. Frac., 203(1), 263-276. https://doi.org/10.1007/s10704-016-0145-3.
  21. Pajak, M. (2011), "The influence of the strain rate on the strength of concrete taking into account the experimental techniques", Arch. Civil Eng., 3, 1.
  22. Park, S., Xia, Q. and Zhou, M. (2001), "Dynamic behavior of concrete at high strain rates and pressures: II. Numerical simulation", Int. J. Impact. Eng., 25(9), 887-910. http://doi.org/10.1016/S0734-743X(01)00021-5.
  23. Richart, F.A. (1936), "Study of the economics of high strength concrete in building construction", J. Proc., 32(3), 459-472. http://doi.org/10.14359/8392.
  24. Schapery, R.A. (1962), A Simple Collocation Method for Fitting Viscoelastic Models to Experimental Data, California Institute of Technology , Pasadena, CA, USA.
  25. Tang, Z., Li, W., Tam, V.W. and Luo, Z. (2020), "Investigation on dynamic mechanical properties of fly ash/slag-based geopolymeric recycled aggregate concrete", Compos. Part B: Eng., 185, 107776. https://doi.org/10.1016/j.compositesb.2020.107776.
  26. Wakabayashi, M., Nakamura, T., Yoshida, N., Iwai, S. and Watanabe, Y. (1980), "Dynamic loading effects on the structural performance of concrete and steel materials and beams", 7th World Conference on Earthquake Engineering, Turkish National Committee on Earthquake Engineering, Istanbul, Turkey, September.
  27. Wang, B., Yan, L., Fu, Q.N. and Kasal, B. (2021), "A comprehensive review on recycled aggregate and recycled aggregate concrete", Resour. Conserv. Recycl., 171, 105565(1-29). https://doi.org/10.1016/j.resconrec.2021.105565.
  28. Wang, C., Xiao, J. and Sun, Z. (2016), "Seismic analysis on recycled aggregate concrete frame considering strain rate effect", Int. J. Concrete Struct. Mater., 10, 307-323. https://doi.org/10.1007/s40069-016-0149-4.
  29. Wang, C. and Xiao, J. (2017), "Rate dependence of confined recycled aggregate concrete", ACI Struct. J., 114(6), 1.
  30. Wang, S., Zhang, M.H. and Quek, S.T. (2012), "Mechanical behavior of fiber-reinforced high-strength concrete subjected to high strain-rate compressive loading", Constr. Build. Mater., 31, 1-11. http://doi.org/10.1016/j.conbuildmat.2011.12.083.
  31. Watstein, D. (1953), "Effect of straining rate on the compressive strength and elastic properties of concrete", ACI J., 49, 729-744. http://doi.org/10.14359/11850.
  32. Xi, Y. and Jennings, H.M. (1997), "Shrinkage of cement paste and concrete modelled by a multiscale effective homogeneous theory", Mater. Struct., 30(6), 329-339. http://doi.org/10.1007/BF02480683.
  33. Xiao, J., Li, W. and Poon, C. (2012), "Recent studies on mechanical properties of recycled aggregate concrete in ChinaA review", Sci. China Tech. Sci., 55(6), 1463-1480. http://doi.org/10.1007/s11431-012-4786-9.
  34. Xiao, J. (2018), Recycled Aggregate Concrete Structures, Springer Link, Springer Berlin, Heidelberg, Germany.
  35. Xiao, J., Li, L., Shen, L. and Yuan, J. (2015), "Effects of strain rate on mechanical behavior of modeled recycled aggregate concrete under uniaxial compression", Constr. Build. Mater., 93, 214-222. https://doi.org/10.1016/j.conbuildmat.2015.04.053.
  36. Xiao, J., Li, Z., Xie, Q. and Shen, L. (2016), "Effect of strain rate on compressive behaviour of high-strength concrete after exposure to elevated temperatures", Fire Saf. J., 83, 25-37. https://doi.org/10.1016/j.firesaf.2016.04.006.
  37. Xiao, S., Li, H. and Monteiro, P.J. (2011), "Influence of strain rates and loading histories on the compressive damage behaviour of concrete", Mag. Concrete Res., 63(12), 915-926. http://doi.org/10.1680/macr.10.00119.
  38. Zhang, M., Wu, H., Li, Q.M. and Huang, E.L. (2009), "Further investigation on the dynamic compressive strength enhancement of concrete-like materials based on split Hopkinson pressure bar tests. Part I: Experiments", Int. J. Impact Eng., 36(12), 1327-1334. http://dx.doi.org/10.1016/j.ijimpeng.2009.04.009.
  39. Zheng, L. and Jones, M. (2013), "Energy absorption of foamed concrete from low-velocity impacts", Mag. Concrete Res., 65(4), 209-219. https://doi.org/10.1680/macr.12.00054.
  40. Zhou, X. and Hao, H. (2008), "Modelling of compressive behaviour of concrete-like materials at high strain rate", Int. J. Solid. Struct., 45(17), 4648-4661. http://doi.org/10.1016/j.ijsolstr.2008.04.002.
  41. Zou, C., Wang, Y. and Hu, Q. (2009), "Experimental study and model predictive of recycled aggregate concrete creep", J. Wuhan Univ. Techol., 31(12), 94-98. http://doi.org/10.3963/j.issn.1671-4431.2009.12.026.