DOI QR코드

DOI QR Code

Composite action in connection of single-walled carbon nanotubes: Modeled as Flügge shell theory

  • Mohamed A. Khadimallah (Department of Civil Engineering, College of Engineering in Al-Kharj, Prince Sattam Bin Abdulaziz University) ;
  • Imene Harbaoui (Laboratory of Applied Mechanics and Engineering LR-MAI, University Tunis El Manar) ;
  • Sofiene Helaili (Carthage University, Tunisia Polytechnic School, LASMAP (LR03ES06)) ;
  • Abdelhakim Benslimane (Laboratoire de Mecanique Materiaux et Energetique (L2ME), Departement Genie Mecanique, Faculte de Technologie, Universite de Bejaia) ;
  • Humaira Sharif (Department of Mathematics, Govt. College University Faisalabad) ;
  • Muzamal Hussain (Department of Mathematics, Govt. College University Faisalabad) ;
  • Muhammad Nawaz Naeem (Department of Mathematics, Govt. College University Faisalabad) ;
  • Mohamed R. Ali (Faculty of Engineering and Technology, Future University) ;
  • Aqib Majeed (Department of Mathematics, The University of Faisalabad, Sargodha Road, University Town Faisalabad) ;
  • Abdelouahed Tounsi (YFL (Yonsei Frontier Lab), Yonsei University)
  • Received : 2023.03.24
  • Accepted : 2023.05.19
  • Published : 2023.10.25

Abstract

On the basis of Flügge shell theory, the vibrations of single walled carbon nanotubes (SWCNTs) are investigated. The structure of armchair single walled carbon nanotubes are used here. Influences of length-to-diameter ratios and the two boundary conditions on the natural frequencies of armchair SWCNTs are examined. The Rayleigh-Ritz method is employed to determine eigen frequencies for single walled carbon nanotubes. The solution is obtained using the geometric characteristics and boundary conditions for natural frequencies of SWCNTs. The natural frequencies decrease as ratio of length to diameter increase and the effect of frequencies is less significant and more prominent for long tube. To assess the frequency confirmation carried out in this paper are compared with the earlier computations.

Keywords

Acknowledgement

This study is supported via funding from Prince Satam bin Abdulaziz University project number (PSAU/2023/R/1444).

References

  1. Abdullah, S.S., Hosseini-Hashemi, S., Hussein, N.A. and Nazemnezhad, R. (2022), "Effect of temperature on vibration of cracked single-walled carbon nanotubes embedded in an elastic medium under different boundary conditions", Mech. Based Des. Struct. Mach., 50(5), 1614-1639. https://doi.org/10.1080/15397734.2020.1759431.
  2. Ansari, R. and Rouhi, H. (2015), "Nonlocal Flugge shell model for the axial buckling of single-walled Carbon nanotubes: An analytical approach", Int. J. Nano Dimens., 6(5), 453-462.
  3. Ehyaei, J. and Daman, M. (2017), "Free vibration analysis of double walled carbon nanotubes embedded in an elastic medium with initial imperfection", Adv. Nano Res., 5(2), 179-192. https://doi.org/10.12989/anr.2017.5.2.179.
  4. Elishakoff, I. and Pentaras. D. (2009), "Fundamental natural frequencies of double-walled carbon nanotubes", J. Sound Vib., 322, 652-664. https://doi.org/10.1016/j.jsv.2009.02.037.
  5. Fauzi, M.A., Arshad, M.F., Nor, N.M. and Ghazali, E. (2022), "Sustainable controlled low-strength material: Plastic properties and strength optimization", Comput. Concrete, 30(6), 393-407. https://doi.org/10.12989/cac.2022.30.6.393.
  6. Ghavanloo, E. and Fazelzadeh, S.A. (2012), "Vibration characteristics of single-walled carbon nanotubes based on an anisotropic elastic shell model including chirality effect", Appl. Math. Modell., 36(10), 4988-5000. https://doi.org/10.1016/j.apm.2011.12.036.
  7. Gupta, S.S., Bosco, F.G. and Batra, R.C. (2010), "Wall thickness and elastic moduli of single-walled carbon nanotubes from frequencies of axial, torsional and inextensional modes of vibration", Comput. Mater. Sci., 47(4), 1049-1059. https://doi.org/10.1016/j.commatsci.2009.12.007.
  8. Iijima, S. (1991), "Helical microtubules of graphitic carbon", Nature, 354(6348), 56-58. https://doi.org/10.1038/354056a0.
  9. Jorio, A., Saito, R., Hafner, J.H., Lieber, C.M., Hunter, D.M., McClure, T. and Dresselhaus, M.S. (2001), "Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering", Phys. Rev. Lett., 86(6), 1118. https://doi.org/10.1103/PhysRevLett.86.1118.
  10. Kepenek, E., Korkmaz K.A. and Gencel Z. (2023), "Comparative study on rapid seismic risk prioritization for reinforced concrete buildings in Antalya, Turkiye", Comput. Concrete, 31(3), 185-195. https://doi.org/10.12989/cac.2023.31.3.185.
  11. Krishnan, A., Dujardin, E., Ebbesen, T.W., Yianilos, P.N. and Treacy, M.M.J. (1998), "Young's modulus of single-walled nanotubes", Phys. Rev. B (Condens. Matt. Mater. Phys.), 58(20), 14013-14019. https://doi.org/10.1103/PhysRevB.58.14013.
  12. Kumar, B.R. (2018), "Investigation on mechanical vibration of double-walled carbon nanotubes with inter-tube Van der waals forces", Adv. Nano Res., 6(2), 135-145. https://doi.org/10.12989/anr.2018.6.2.135.
  13. Lal, A. and Markad, K. (2018), "Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams", Comput. Concrete, 22(6), 501-514. https://doi.org/10.12989/cac.2018.22.6.501.
  14. Majeed, S.S., Haido, J.H., Atrushi, D.S., Al-Kamaki, Y., Dinkha, Y.Z., Saadullah, S.T. and Tayeh, B.A. (2021), "Properties of self-compacted concrete incorporating basalt fibers: Experimental study and gene expression programming (GEP) analysis", Comput. Concrete, 28(5), 451-463. https://doi.org/10.12989/cac.2021.28.5.451.
  15. Miyashiro, D., Taira, H., Hamano, R., Reserva, R.L. and Umemura, K. (2020), "Mechanical vibration of single-walled carbon nanotubes at different lengths and carbon nanobelts by modal analysis method", Compos. Part C: Open Access, 2, 100028. https://doi.org/10.1016/j.jcomc.2020.100028.
  16. Mousavi, M., Mohammadimehr, M. and Rostami, R. (2019), "Analytical solution for buckling analysis of micro sandwich hollow circular plate", Comput. Concrete, 24(3), 185-192. https://doi.org/10.12989/cac.2019.24.3.185.
  17. O'Connell, M.J. (2006), Carbon Nanotubes: Properties and Applications, CRC Press, Boca Raton, FL, USA.
  18. Pantano, A., Parks, D.M. and Boyce, M.C. (2004), "Mechanics of deformation of single-and multi-wall carbon nanotubes", J. Mech. Phys. Solid., 52(4), 789-821. https://doi.org/10.1016/j.jmps.2003.08.004.
  19. Ponnusamy, P. and Amuthalakshmi, A. (2013), "Vibration analysis of a viscous fluid conveying double walled carbon nanotube", International Conference on Advanced Nanomaterials & Emerging Engineering Technologies, Chennai, India, July.
  20. Rakrak, K., Zidour, M., Heireche, H., Bousahla, A.A. and Chemi, A. (2016), "Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory", Adv. Nano Res., 4(1), 31-44. https://doi.org/10.12989/anr.2016.4.1.031.
  21. Sobamowo, M.G., Akanmu, J.O., Adeleye, O.A. and Yinusa, A.A. (2019), "Nonlinear vibrations of single-and double-walled carbon nanotubes resting on two-parameter foundation in a magneto-thermal environment", SN Appl. Sci., 1(10), 1-22. https://doi.org/10.1007/s42452-019-1158-0.
  22. Strozzi, M., Manevitch, L.I., Pellicano, F., Smirnov, V.V. and Shepelev, D.S. (2014), "Low-frequency linear vibrations of single-walled carbon nanotubes: Analytical and numerical models", J. Sound Vib., 333(13), 2936-2957. https://doi.org/10.1016/j.jsv.2014.01.016.
  23. Thai, H.T. (2012), "A nonlocal beam theory for bending, buckling, and vibration of nanobeams", Int. J. Eng. Sci., 52, 56-64. https://doi.org/10.1016/j.ijengsci.2011.11.011.
  24. Treacy, M.J., Ebbesen, T.W. and Gibson, J.M. (1996), "Exceptionally high Young's modulus observed for individual carbon nanotubes", Nature, 381(6584), 678-680. https://doi.org/10.1038/381678a0.
  25. Vieira, A.A., Melo, G.S.S. and Miranda, A.C. (2020), "RC deep beams with unconventional geometries: Experimental and numerical analyses", Comput. Concrete, 26(4), 351-365. https://doi.org/10.12989/cac.2020.26.4.351.
  26. Wang, Q. and Varadan, V.K. (2007), "Application of nonlocal elastic shell theory in wave propagation analysis of carbon nanotubes", Smart Mater. Struct., 16(1), 178. https://doi.org/10.1088/0964-1726/16/1/022.
  27. Yang, J., Ke, L.L. and Kitipornchai, S. (2010), "Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory", Phys. E: Low Dimens. Syst. Nanostruct., 42(5), 1727-1735. https://doi.org/10.1016/j.physe.2010.01.035.
  28. Zamani, A., Kolahchi, R. and Bidgoli, M.R. (2017), "Seismic response of smart nanocomposite cylindrical shell conveying fluid flow using HDQ-Newmark methods", Comput. Concrete, 20(6), 671-682. https://doi.org/10.12989/cac.2017.20.6.671.
  29. Zhang, Y.Y., Wang, C.M. and Tan, V.B.C. (2009), "Assessment of Timoshenko beam models for vibrational behavior of single-walled carbon nanotubes using molecular dynamics", Adv. Appl. Math. Mech., 1(1), 89-106.