References
- Abdul-Wahab, H.M. and Khalil, M.H. (2000), "Rigidity and strength of orthotropic reinforced concrete waffle slabs", J. Struct. Eng., 126(2), 219-227. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:2(219).
- ACI 318 (2019), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Farmington Hills, MI, USA.
- Al-Azzawi, A.A. and Abdul Al-Aziz, B.A. (2018), "Behavior of reinforced lightweight aggregate concrete hollow core slabs", Comput. Concrete, 21(2), 117-126. https://doi.org/10.12989/cac.2018.21.2.117.
- Al-Azzawi, A.A. and Al-Asdi, A.J. (2017), "Behavior of one way reinforced concrete slabs with styropor blocks", Adv. Concrete Constr., 5(5), 451-468. https://doi.org/10.12989/acc.2017.5.5.451.
- Al-Azzawi, A.A. and. Abed S.A. (2017), "Investigation of the behavior of reinforced concrete hollow-core thick slabs", Comput. Concrete, 19(5), 567-577. https://doi.org/10.12989/cac.2017.19.5.567.
- Al-Fakher, U., Manalo, A., Ferdous, W., Aravinthan, T., Zhuge, Y., Bai, Y. and Edoo, A. (2021), "Bending behaviour of precast concrete slab with externally flanged hollow FRP tubes", Eng. Struct., 241, 112433. https://doi.org/10.1016/j.engstruct.2021.112433.
- Al-Gasham, T.S., Hilo, A.N. and Alaws, M.A. (2019), "Structural behavior of reinforced concrete one-way slabs voided by polystyrene balls", Case Stud. Constr. Mater., 11, e00292. https://doi.org/10.1016/j.cscm.2019.e00292.
- Al-Gasham, T.S., Mhalhal, J. and Abid, S.R.(2021), "Quasi-static analysis of biaxial voided slabs with openings", Struct., 33, 4176-4192. https://doi.org/10.1016/j.istruc.2021.07.021.
- Allawi, N.M. (2014), "Behavior and strength of one way voided reinforced concrete slabs", Proceedings of the International Conference for Engineering Science, Baghdad, Iraq.
- Bazant, Z.P. and Kazemi, M.T. (1991), "Size effect on diagonal shear failure of beams without stirrups", ACI Struct. J., 88(3), 268-276.
- Birgison, S.R. (2011), "Shear resistance of reinforced concrete beams without stirrup", B.Sc. Thesis, Reykjav University, Reykjavik, Iceland.
- Chung, J.H., Jung, H.S., Bae, B., Choi, C.H. and Choi, H.K. (2018), "Two-way flexural behavior of donut-type voided slabs", Int. J. Concrete Struct. Mater., 12, 1-13. https://doi.org/10.1186/s40069-018-0247-6.
- Chung, J.H., Bae, B., Choi, H.K., Jung, H. and Choi, C.H. (2018), "Evaluation of punching shear strength of voided slabs considering the effect of the ratio b0/d", Eng. Struct., 164, 70-81. https://doi.org/10.1016/j.engstruct.2018.02.085.
- Cladera, A. and Mari, A.R. (2005), "Experimental study on high-strength concrete beams failing in shear", Eng. Struct., 27(10), 1519-1527. https://doi.org/10.1016/j.engstruct.2005.04.010.
- Deng, M., Dai, J., Lu, H. and Liang, X. (2015), "Shear capacity and failure behavior of steel-reinforced high ductile concrete beams", Adv. Mater. Sci. Eng., 2015, 1-8. https://doi.org/10.1155/2015/845490.
- Elmo, D. and Mitelman, A. (2021), "Modeling concrete fracturing using a hybrid finite-discrete element method", Comput. Concrete, 27(4), 297-304. https://doi.org/10.12989/cac.2021.27.4.297.
- Frosch, R.J. (2000), "Behavior of large-scale reinforced concrete beams with minimum shear reinforcement", ACI Struct. J., 97(6), 814-820. https://doi.org/10.14359/9626.
- Garcia, S.L., Lannes, C.V., Carneiro, L.V. and Lara, R.C. (2020), "Shear behavior of lightweight self-consolidating reinforced concrete beams without transverse reinforcement", Latin Am. J. Solid. Struct., 17(4), e277. https://doi.org/10.1590/1679-78256040.
- Gil-Martin, L.M. and Hernandez-Montes, E.(2021), "Review of the reinforcement sizing in the strength design of reinforced concrete slabs", Comput. Concrete, 27(3), 211-223. https://doi.org/10.12989/cac.2021.27.3.211.
- Gorkem, S.E. and Husem, M. (2013), "Load capacity of high-strength reinforced concrete slabs by yield line theory", Comput. Concrete, 12(6), 819-829. https://doi.org/10.12989/cac.2013.12.6.819.
- Juan, K. (2011), "Cracking mode and shear strength of lightweight concrete beams", Ph.D. Thesis, National University, Singapore, Singapore.
- Kim, J.K. and Park, Y. (1994), "Shear strength of reinforced high strength concrete beams without web reinforcement", Mag. Concrete Res., 46(166), 7-16. https://doi.org/10.1680/macr.1994.46.166.7
- Lee, J.Y. and Kim, U.Y. (2008), "Effect of longitudinal tensile reinforcement ratio and shear span-depth ratio on minimum shear reinforcement in beams", ACI Struct. J., 105(2), 134-144.
- Mphonde, A.G. and Frantz, G.C. (1984), "Shear tests of high- and low- strength concrete beams without stirrups", J. Proc., 81(4), 350-357.
- Najm, I.N., Daud, R.A. and Al-Azzawi, A.A. (2019), "Behavior of reinforced concrete segmental hollow core slabs under monotonic and repeated loadings", Struct. Monit. Maint., 6(4), 269-289. https://doi.org/10.12989/smm.2019.6.4.269.
- Olawale, A.J. and Ayodele, A.G. (2014), "A comparative study on the flexural behavior of Waffle and solid slab models when subjected to point load", J. Civil Eng. Arch., 8(5), 588-594.
- Pawar, A.J., Mathew, N.S., Dhake, P.D. and Patil, Y.D. (2022), "Flexural behavior of two-way voided slab", Mater. Today: Proc., 65(2), 1534-1545. https://doi.org/10.1016/j.matpr.2022.04.500.
- Pendyala, R.S. and Mendis, P. (2000), "Experimental study on shear strength of high-strength concrete beams", ACI Struct. J., 97(4), 564-571. https://doi.org/10.14359/7421.
- Sarkis, A.I., Sullivan, T.J., Brunesi, E. and Nascimbene, R. (2022), "Critical modeling criteria for precast pre-stressed hollow-core slabs", J. Build. Eng., 54, 104545. https://doi.org/10.1016/j.jobe.2022.104545.
- Sathiyamoorthy, K. (2016), "Shear and flexural behaviour of lightweight self-consolidating concrete beams", MSc. Thesis, Ryerson University, Toronto, ON, Canada.
- Shallal, M.S and Al-Azzawi, A.A. (2021), "Behavior of reinforced sustainable concrete hollow-core slabs", Adv. Concrete Constr., 11(4), 271-284. https://doi.org/10.12989/acc.2021.11.4.271.
- Singh, M., Saini, B., Kumar, A., Poonia, R.S. and Reddy, K.V. (2022), "Behaviour of voided slab utilizing waste materials", Proceedings of the International Conference on Industrial and Manufacturing Systems (CIMS-2020): Optimization in Industrial and Manufacturing Systems and Applications, Springer International Publishing, Cham, Switzerland.
- Wang, L., He, T., Zhou, Y., Tang, S., Tan, J., Liu, Z. and Su, J. (2021), "The influence of fiber type and length on the cracking resistance, durability and pore structure of face slab concrete", Constr. Build. Mater., 282, 122706. https://doi.org/10.1016/j.conbuildmat.2021.122706.
- Yaagoob, A.H. and Harba, I.S. (2020), "Behavior of self compacting reinforced concrete one way bubble deck slab", Al-Nahrain J. Eng. Sci., 23(1), 11.
- Yoo, D. and Yang, J. (2018), "Effects of stirrup, steel fiber, and beam size on shear behavior of high-strength concrete beams", Cement Concrete Compos., 87, 137-148. https://doi.org/10.1016/j.cemconcomp.2017.12.010.
- Zhang, H., Huang, W., Liu, B., Han, C., Li, Q. and Chen, C. (2022), "Flexural behavior of precast concrete hollow-core slabs with high-strength tendons", J. Build. Eng., 59, 105050. https://doi.org/10.1016/j.jobe.2022.105050.
- Zhang, S.H., Jiang, X.R., Xia, Z.X., Zhang, Q.Y., Tian, W.H. and Li, Y.X. (2020), "Mathematical modeling of closure behavior for a centrally elliptical void in thick slab", Mech. Mater., 145, 103373. https://doi.org/10.1016/j.mechmat.2020.103373.
- Zhenpeng, Y., Rui, T., Peng, C., Qiao, H., Xinghua, X. and Feiting, S. (2019), "Multi-axial test and failure criterion analysis on selfcompacting lightweight aggregate concrete", Constr. Build. Mater., 215, 786-798. https://doi.org/10.1016/j.conbuildmat.2019.04.236.