DOI QR코드

DOI QR Code

Effect of the Diisocyanate Type on the Hydrolysis Behavior of Polyurethane

  • Dong-Eun Kim (Department of Chemical Engineering, Dong-A University) ;
  • Seung-Ho Kang (Department of Chemical Engineering, Dong-A University) ;
  • Sang-Ho Lee (Department of Chemical Engineering, Dong-A University)
  • Received : 2023.09.11
  • Accepted : 2023.09.25
  • Published : 2023.09.30

Abstract

The effect of diisocyanate type on the decomposition temperature of polyurethane (PU) hydrolysis was investigated in a subcritical water medium up to 250℃. PU samples were prepared using different types of diisocyanate: two aromatic diisocyanates (4,4'-methylene diphenyl diisocyanate (MDI) and methyl phenylene diisocyanate (TDI)), one unbranched aliphatic diisocyanate (hexamethylene diisocyanate (HDI)), and two cyclic aliphatic diisocyanates (4,4'-methylene dicyclohexyl diisocyanate (H12MDI) and isophorone diisocyanate (IPDI)). The pressure had no effect on hydrolysis in the range of 70-250 bar. The decomposition temperature of the PU samples increased in the following order: TDI-PU (199℃) < H12MDI ≈ IPDI ≈ HDI (218-220℃) < MDI-PU (237℃). This order of increase in temperature is related to the electron-donating ability of the group to connected to the nitrogen of the urethane unit. When the temperature of the (PU + water) mixture reached the specific decomposition temperature, the PU samples hydrolyzed completely within 5 min into primary amine and 1,4-butanediol. The hydrolysis products from MDI-PU and H12MDI-PU were separated into a liquid phase rich in (BD + water) and a solid low phase rich in amine, whereas the products from TDI-, IPDI-, and HDI-PU existed in a single aqueous phase.

Keywords

Acknowledgement

This work was supported by the Dong-A University research fund.

References

  1. J. O. Akindoyo, M. D. H. Beg, S. Ghazali, M. R. Islam, N. Jeyaratnam, and A. R. Yuvaraj, "Polyurethane types, synthesis and applications-a review", RSC Advances, 6, 114453 (2016). 
  2. Z. S. Petrovic and J. Ferguson, "Polyurethane elastomers", Prog. Polym. Sci., 16, 695 (1991). 
  3. M. Szycher, "Szycher's Handbook of Polyurethanes", 2nd Ed. CRC Press, Boca Raton, 2016. 
  4. R. Zevenhoven, "Treatment and Disposal of Polyurethane Wastes: Options for Recovery and Recycling", 1st ed., Helsinki University of Technology, Espoo, Finland, pp. 25-29, 2004. 
  5. F. E. Mark and A. Kamprath, "Recycling & Recovery Options for PU Seating Material: A Joint Study of ISOPA/Euro-Moulders", SAE Tech. Pap. Ser.1, 1514 (2000). 
  6. A. Mao, R. Shmulsky, Q. Li, and H. Wan, "Recycling polyurethane materials: A comparison of polyol from glycolysis with micronized polyurethane powder in particleboard applications", BioResources, 9, 4253 (2014). 
  7. L. Guo, W. Wang, X. Guo, K. Hao, H. Liu, Y. Xu, G. Liu, S. Guo, L. Bai, D. Ren, and F. Liu, "Recycling of flexible polyurethane foams by regrinding scraps into powder to replace polyol for re-foaming", Materials, 15, 6047 (2022). 
  8. K. M. Zia, H. N. Bhatti, and I. A. Bhatti, "Methods for polyurethane and polyurethane composites, recycling and recovery: A review", React. Funct. Polym., 67, 675 (2007). 
  9. A. J. Hulme and T. C. Goodhead, "Cost effective reprocessing of polyurethane by hot compression moulding", J. Mater. Process. Technol., 139, 322 (2003). 
  10. S. Chen, F. Wang, Y. Peng, T. Chen, Q. Wu, and P. Sun, "A single molecular Diels-Alder crosslinker for achieving recyclable cross-linked polymers", Macromol. Rapid Commun., 36, 1687 (2015). 
  11. M. M. A. Nikje, A. B. Garmarudi, and A. B. Idris, "Polyurethane waste reduction and recycling: From bench to pilot scales", Des. Monomers Polym., 14, 395 (2011). 
  12. C. Diessel, C. Kliwer, G. Burak, E. Blimel, and C. Kittel, "Recycling of thermosetting polyurethane soft foam", U.S. Patent 5,185,380A (1993). 
  13. C. Kliwer and C. Kittel, "Method of manufacturing a composite foam from flakes, composite foam, and use of this composite foam", U.S. Patent 6,228,478 B1 (2001). 
  14. A. Kemona and M. Piotrowska, "Polyurethane recycling and disposal: Methods and prospects", Polymers, 12, 1752 (2020). 
  15. K. M. Zia, H. N. Bhatti, and I. Ahmad, "Methods for polyurethane and polyurethane composites, recycling and recovery: A review", React. Funct. Polym., 67, 675 (2007). 
  16. W. Yang, Q. Dong, S. Liu, H. Xie, L. Liu, and J. Li, "Recycling and disposal methods for polyurethane foam wastes", Procedia Environ. Sci., 16, 167 (2012). 
  17. F. Quadrini, D. Bellisario, and L. Santo, "Recycling of thermoset polyurethane foams", Polym. Eng. Sci., 53, 1357 (2013). 
  18. W. S. Ji, P. Sahu, G. Kim, S. Jeong, C. Y. Jeon, T. G. Lee, S. H. Lee, and J. S. Oh, "An insight into the recycling of waste flexible polyurethane foam using glycolysis", Elast. Compos., 58, 32 (2023). 
  19. J. del Amo, A. M. Borreguero, M. J. Ramos, and J. F. Rodriguez, "Glycolysis of polyurethanes composites containing nanosilica", Polymers, 13, 1418 (2021). 
  20. S. Mishra, V. S. Zope, and R. D. Kulkarni, "Kinetics and thermodynamics of hydrolytic depolymerization of polyurethane foam at higher temperature and pressure", Polym.-Plast. Technol. Eng., 43, 1001 (2004). 
  21. S. Motokucho, A. Yamaguchi, Y. Nakayama, H. Morikawa, and H. Nakatani1, "Hydrolysis of aromatic polyurethane in water under high pressure of CO2", J. Polym. Sci. Part A: Polym. Chem., 55, 2004 (2017). 
  22. S.-H. Lee, M. A. LoStracco, and M. A. McHugh, "Cosolvent effect on the phase behavior of poly(ethylene-co-acrylic acid)-butane mixtures", Macromolecules, 29, 1349 (1996). 
  23. G. S. Nolan, L. J. Saethre, M. R. Siggel, T. D. Thomas, and L. Ungier, "Electron-donating ability of aliphatic and aromatic rings", J. Am. Chem. Soc., 107, 6463 (1985).