DOI QR코드

DOI QR Code

주제기반 설계 모형에 따른 수학-정보 연계·융합 수업 자료 개발 연구

A Study on the Development of Mathematical-Informatics Linkage·Convergence Class Materials according to the Theme-Based Design Model

  • 투고 : 2023.08.20
  • 심사 : 2023.09.25
  • 발행 : 2023.09.30

초록

본 연구는 교과 간 연계·융합 수업자료 개발의 필요성이 높아지고 있음에도 고등학교에서 관련 수업 자료 개발 빈도가 적다는 선행연구의 연구 결과에 근거하여 수학과 정보 과목의 연계·융합 수업자료 개발 과정 및 결과물을 제시한 연구이다. 특히 본 연구는 동일한 교원학습공동체 프로그램에 참여한 6명의 교사들이 수학과 정보 교과 간 연계·융합 수업자료로서의 적합성과 현장 수업 적용 가능성이 높은 자료 개발을 목표로 논의한 과정들에 대한 정보를 담고 있다. 자료 개발 절차에 따라 주제기반 설계 모형을 적용하여 자료를 개발하였으며, 선행연구와 교원학습공동체 구성원의 합의 결과를 반영하여 100분 블록 수업 시간 동안 수학과 정보 과목의 교사가 함께 수업을 진행할 수 있는 수업 자료를 개발하였다. 개발한 자료는 사회적으로 이슈가 되었던 문제상황을 두 과목의 연결고리로 삼아 학생들이 수학적 모델링과 코딩을 통한 문제해결을 경험할 수 있는 자료이다. 개발된 자료는 '개발 자료를 현장에 적용하기에 타당한 자료인지 살펴보고 적용 실천성을 높이기 위하여' 현장 교사를 대상으로 CVR 검증을 통하여 검증을 하였으며, 그 결과를 반영하여 최종 개발된 수업 자료를 지도안 형태로 제시하였다. 또한 자료 개발 과정에서 개발자들의 경험한 시행착오와 고민도 함께 기술하여 현장 연구자들의 관련 연구 수행에 기초가 될 수 있는 정보를 제공하고자 하였다. 이러한 연구 결과는 수업자료 개발 모형이 실제 수업에 적용가능한지 탐색할 수 있는 실증적인 자료로서의 가치를 가지며, 이들 자료의 축적은 이론적인 수업 모형과 실제적인 현장 수업 사이의 선순환적인 관계 구축에 도움이 될 것으로 보인다.

This study presents the process and outcomes of developing mathematical-informatics linkage·convergence class materials, based on previous research findings that indicate a lack of such materials in high schools despite the increasing need for development of interdisciplinary linkage·convergence class materials In particular, this research provides insights into the discussions of six teachers who participated in the same professional learning community program, aiming to create materials that are suitable for linkage·convergence class materials and highly practical for classroom implementation. Following the material development process, a theme-based design model was applied to create the materials. In alignment with prior research and consensus among teacher learning community members, mathematics and informatics teachers developed instructional materials that can be utilized together during a 100-minute block lesson. The developed materials utilize societal issue contexts to establish links between the two subjects, enabling students to engage in problem-solving through mathematical modeling and coding. To increase the validity and practicality of the developed resources during their field application, CVR verification was conducted involving field teachers. Incorporating the results of the CVR verification, the finalized instructional materials were presented in the form of a teaching guide. Furthermore, we aimed to provide insights into the trial-and-error experiences and deliberations of the developers throughout the material development process, with the intention of offering valuable information that can serve as a foundation for conducting related research by field researchers. These research findings hold value as empirical evidence that can explore the applicability of teaching material development models in fields. The accumulation of such materials is expected to facilitate a cyclical relationship between theoretical teaching models and practical classroom applications.

키워드

참고문헌

  1. Ko, S. S., Han, H. S., Kim, H. J., Lee, D. G., Shin, D. J., & Lee, C. Y. (2002). A study on the textbook development based on mathematical modeling. Journal of Education & Culture, 26(5), 665-690.
  2. Ministry of Education (2015). The mathematics education curriculum. 2015-74, [Vol. 8]. Ministry of Education.
  3. Ministry of Education (2022). The mathematics education curriculum. 2022-33, [Vol. 8]. Ministry of Education.
  4. Ministry of Education (2022). The information curriculum. 2022-33, [Vol. 10]. Ministry of Education.
  5. Kwon, J. R., Lee, K. W., Shin, H. J., Kim, J. Y., & Kim, J. H. (2017). Application of curriculum alignment and integration in the 2015 national curriculum for the elementary and secondary schools, KICE Research RRC 2017-8-1.
  6. Kim, J. S., Kim, S. K., Lee, C. Y., Choi, Y. H., Kuak, S. B., & Hwang, Y. J. (2021). Mathematical modeling contents. Geobooks.
  7. Nam, Y.K., Yoon, J. A., Han, K. J., & Jeong, J. H. (2019). SEM-CT: Comparison of problem solving processes in science(S), engineering(E), mathematic(M), and computational thinking(CT). The Journal of Korean Association of Computer Education, 22(3),37-54. https://doi.org/10.32431/kace.2019.22.3.004
  8. Shin, G. C. & Suh, B. E. (2019). A study on development of teaching & learning materials related to coding for convergence education integrating mathematics and information. Journal of Science Education, 43(1), 17-42. https://doi.org/10.21796/JSE.2019.43.1.17
  9. Lee, D. G. (2021). A study on the development of person-based class materials in subject Inquiry Subject>. Communications of Mathematical Education, 35(4), 475-504. https://doi.org/10.7468/JKSMEE.2021.35.4.475
  10. Lee, D. G. & Ahn, S. J. (2021). A case study on the development of real-time interactive class data among non-face-to-face remote class types. Communications of Mathematical Education, 35(2), 173-191. https://doi.org/10.7468/JKSMEE.2021.35.2.173
  11. Lee, D. G. & Han, C. H. (2022). A study on the development of feedback-based instructional materials for process-focused assessment classes in high school mathematics classes. Communications of Mathematical Education, 36(1), 107-138. https://doi.org/10.7468/JKSMEE.2022.36.1.107
  12. Lee, D. G. & Kwon H. J. (2022). A study on the development of mathematical-ethical linkage.convergence class materials according to the theme-based design model. Communications of Mathematical Education, 36(2), 253-286. https://doi.org/10.7468/JKSMEE.2022.36.2.253
  13. Lee, T. W., Choi, H. J., & Jeon, Y. J. (2020). Information curriculum and education theory(2nd). HanbitAcademy, Inc.
  14. Jung, U. Y. & Lee, Y. J. (2018). Content analysis on the curriculum achievement standards in the software Mathematics.science convergence teaching and learning material. The Journal of Korean Association of Computer Education, 21(5), 11-23. https://doi.org/10.32431/kace.2018.21.5.002
  15. Jin, E. N. (2009). A study on the development of the type and standard of teaching Materials in technology home economics class based upon the revised national curriculum in 2007. The Korean Journal of Technology Education, 9(1), 139-163.
  16. Choi, I. Y. & Pang, J. S. (2018). Research on the instructional strategies to foster problem solving ability as mathematical subject competency in elementary classrooms. Education of Primary School Mathematics, 21(3), 351-374. https://doi.org/10.7468/JKSMEC.2018.21.3.351
  17. Hwang, H. J. (2018). The investigation of the mathematics teaching evaluation standards focused on mathematical competencies. Communications of Mathematical Education, 32(1), 97-111. https://doi.org/10.7468/JKSMEE.2018.32.1.97
  18. Drake, S. M. (2012). Creating standards-based intergrated curriculum. A SAGE Company.
  19. Lawshe, C. H. (1975). A quantitative approach to content validity. Personnel Psychology, 28(4), 563-575. https://doi.org/10.1111/j.1744-6570.1975.tb01393.x
  20. Blum, W., & Niss, M. (1991). Applied mathematical problem solving, modelling, applications, and links to other subjects-State, trends and issues in mathematics instruction. Educational Studies in Mathematics, 22, 37-68. https://doi.org/10.1007/BF00302716
  21. Blum, W., & Ferri, R. B. (2009). Mathematical modelling: Can it be taught and learnt?. Journal of Mathematical Modelling and Application, 1(1), 45-58.
  22. diSessa, A. A. (2018). Computational literacy and "the big picture" concerning computers in mathematics education. Mathematical Thinking and Learning, 20(1), 3-31. https://doi.org/10.1080/10986065.2018.1403544
  23. Sneider, C., Stephenson, C., Schafer, B., & Flick, L. (2014). Computational thinking in high school science classrooms. The Science Teacher, 81(5), 53.
  24. Wing, J. M. (2006). Computational thinking. Communications of the ACM, 49(3), 33-35. https://doi.org/10.1145/1118178.1118215
  25. Wing, J. M. (2017). Computational thinking's influence on research and education for all. Italian Journal of Educational Technology, 25(2), 7-14.