DOI QR코드

DOI QR Code

MAXIMAL STRONG PRODUCT AND BALANCED FUZZY GRAPHS

  • Received : 2022.04.24
  • Accepted : 2023.04.28
  • Published : 2023.09.30

Abstract

The notion of maximal product of two fuzzy graphs was introduced by Radha and Arumugam in 2015 and the notion of balanced fuzzy graph was introduced by Al-Hawary in 2011. In this paper, we give a modification of the maximal product definition, which we call maximal strong product. We also introduce the relatively new notion of maximal-balanced fuzzy graphs. We give necessary and sufficient conditions for the maximal strong product of two balanced (resp., maximal-balanced) fuzzy graphs to be balanced (resp., maximal-balanced) and we prove that these two independent notions are preserved under isomorphism.

Keywords

Acknowledgement

The author would like to thank referees for useful comments and suggestions.

References

  1. T. Al-Hawary, Complete fuzzy graphs, Inter. J. Math. Comb. 4 (2011), 26-34.
  2. T. Al-Hawary, S. Al-Shalaldeh and M. Akram, Certain matrices and energies of fuzzy graphs, TWMS JPAM 14 (2023), 50-68.
  3. M. Akram., D. Saleem and T. Al-Hawary, Spherical fuzzy graphs with application to decision-making, Math. Comp. Appl. 25 (2020), 1-22.
  4. T. Al-Hawary, Density results for perfectly regular and perfectly edge-regular fuzzy graphs, J. Disc. Math. Scie. & Cryptography 2 (2022), 1-10.
  5. T. Al-Hawary and B. Horani,, On intuitionistic product fuzzy graphs, Ital. J. Pure. Appl. Math. 38 (2017), 113-126.
  6. T. Al-Hawary, On Modular flats and pushouts of matroids, Ital. J. Pure. Appl. Math. 43 (2020), 273-241.
  7. T. Al-Hawary, Matroid filterbase, Indian J. math. 60 (2018), 301-310.
  8. T. Al-Hawary, β-greedoids, Matematicki Vesnik 66 (2014), 343-350.
  9. T. Al-Hawary, Complete Hamacher fuzzy graphs, J. Appl. Math. and Informatics 40 (2022), 1043-1052.
  10. T. Al-Hawary, Strong modular product and complete fuzzy graphs, Ital. J. Pure Appl. Math. (2023)
  11. M. Karunambigai, M. Akram, S. Sivasankar and K. Palanivel, Balanced intuitionistic fuzzy graphs, Appl. Math. Sci. 7 (2013), 2501-2514.
  12. M. Karunambigai, S. Sivasankar and K Palanivel, Properties of balanced intuitionistic fuzzy graphs, Inte. J. Res. Sci. 1 (2014), 1-5.
  13. H. Rashmanlou and M. Pal, Balanced interval-valued fuzzy graphs, J. Phys. Sci. 17 (2013), 43-57.
  14. H. Rashmanlou and Y. Benjun, Complete interval-valued fuzzy graph, Annals Fuzzy Math. Infor. 1 (2013), 1-11.
  15. K. Radha and S. Arumugam, On maximal product of two fuzzy graphs, Inter. J. Current Res. 1 (2015), 11508-11515.
  16. A. Rosenfeld, Fuzzy graphs, in Zadeh. L. A, K. S. Fu, K, Tanaka and M. Shirmura (Eds), Fuzzy sets and their applications to cognitive and processes Academic Press, New York, 1975.
  17. M. Sunitha, Complement of fuzzy graphs, Indian J. Pure Appl. Math. 33 (2002), 1451-1464.
  18. K. Tatanassov, Intuitionistic fuzzy sets: Theory and applications, Studiesin fuzziness and soft computing, Heidelberg, New York, Physicaverl, 1999, 1451-1464.
  19. N. Vinoth Kumar and G. Geetha Ramani, Product intuitionistic fuzzy graph, Inter. J. Comp. Appl. 18 (2011), 11-33.
  20. L. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X