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ON HOMOGENEOUS SHEAR FLOWS WITH BOTTOM CROSS

SECTION

S. LAVANYA∗, V. GANESH, G. VENKATA RAMANA REDDY

Abstract. We consider inviscid, incompressible homogeneous shear flows

of variable cross section known as extended Rayleigh problem. For this

extended Rayleigh problem, we derived instability region which intersect
with semi-circle instability region under some condition. Also we derived

condition for stability , upper bound for amplification factor and growth
rate of an unstable mode.

AMS subject classification : 76E05.
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1. Introduction

The extended Rayleigh problem deals with incompressible, inviscid,
homogeneous shear flows with bottom cross section. This problem was intro-
duced by [4], derivation and mathematical analysis was given in [2] and [9]. This
is a special case of extended Taylor-Goldstein problem. [2] focused on strat-
ified shear flows with bottom cross section and this is an extension of stan-
dard Taylor-Goldstein problem. When density remains constant then extended
Taylor-Goldstein problem reduces to problem of study. General results have
been proved.
The following results are already known for problem.

(1) Instability regions that intersects with semi-circle region under some
conditions (cf. [7]).

(2) The neutral modes are bounded (cf. [7]).
(3) Howard’s conjecture is derived. (cf. [7]).
(4) Sufficient criterion for the stability is derived (cf. [3], [8]).
(5) Short wave stability condition is derived (cf. [3], [8]).
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(6) Instability region that intersects with semi-circle region under some con-
dition is derived (cf. [5]).

(7) Instability region that intersects with semi-circle is derived (cf. [6]).
(8) Bounds for amplification factor is derived (cf. [6]).

The instability region derived by [7] depends on two conditions.The instability

region derived by [5] depends on conditions like U0min > 0 (or)
[
bD

(
D(U0)

b

)]
>

0. [6] followed the previous work and relaxed the conditions like of [7], [5] and
derived an instability region that intersect with semi-circle region. [8] derived
condition for stability and short waves stability for special class of topography
namely breadth function remains constant. [3] derived short wave stability con-
dition and stability condition for a class of topography.
In this paper, we obtained a parabolic instability region which intersects with
semi-circle region under certain condition. New parabolic instability region de-
pends on shear function, breadth function minimum, maximum of velocity pro-
file and vorticity function. Also we obtained condition for short wave stability,
bounds for amplification factor and estimate for growth rate. Unlike [3], the new
result does not depends on any conditions.

2. Extended Rayleigh Problem

D

[
D (bϕ)

b

]
−

k2 +
[
bD

(
D(U0)

b

)]
U0 − c

ϕ = 0, (1)

with boundary conditions

ϕ(0) = 0 = ϕ(D). (2)

Here k > 0 wave number, U0 is the basic velocity profile, b(z) is the breadth
function, c = cr + ici is the phase velocity.

For an unstable mode ci > 0, define ϕ = (U0 − c)
1
2
ψ then ( 1), ( 2) becomes

D

[
(U0 − c)

D (bψ)

b

]
−1

2

[
bD

(
D (U0)

b

)]
ψ−k2 (U0 − c)ψ−

[D(U0)]
2

4

(U0 − c)
ψ = 0, (3)

with boundary conditions

ψ(0) = 0 = ψ(D), (4)

3. Parabolic Instability Region

Theorem 3.1. For an unstable mode with ci > 0 and an arbitrary
real number U0m = U0min+U0max

2 , we have the following

c2i ≤ λ

[
cr +

U0max

4
− U0min

4

]
,
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where

λ =
[D (U0)]

2
max

|3U0min + U0max|
[

bminπ2

bmaxD2 + k2
]
+
∣∣∣bD (

D(U0)
b

)∣∣∣
min

.

Proof: Multiplying ( 3) by (bψ∗), integrating , applying ( 4),comparing real and
imaginary parts we get∫ D

0

(U0 − cr)

[
|D(bψ)|2

b
+ k2b |ψ|2

]
dz +

1

2

∫ D

0

bD

(
D (U0)

b

)
b |ψ|2 dz

+

∫ D

0

[D (U0)]
2

4 |U0 − c|2
(U0 − cr) b |ψ|2 dz = 0, (5)

−ci
∫ D

0

[
|D(bψ)|2

b
+ k2b |ψ|2

]
dz + ci

∫ D

0

[D (U0)]
2

4 |U0 − c|2
b |ψ|2 dz = 0. (6)

Multiplying ( 6) by (cr+U0m)
ci

and subtracting from ( 5), we get∫ D

0

(U0 + U0m)

[
|D(bψ)|2

b
+ k2b |ψ|2

]
dz +

1

2

∫ D

0

bD

(
D (U0)

b

)
b |ψ|2 dz

+

∫ D

0

[D (U0)]
2

4 |U0 − c|2
(U0 − 2cr − U0m) b |ψ|2 dz = 0.

Applying Rayleigh-Ritz inequality, we get∫ D

0

[
(U0 + U0m)

[
bminπ

2

bmaxD2
+ k2

]
+

1

2
bD

(
D (U0)

b

)]
b |ψ|2 dz

+

∫ D

0

[
[D (U0)]

2

4 |U0 − c|2
(U0 − 2cr − U0m)

]
b |ψ|2 dz ≤ 0;

i.e.,∫ D

0

[[
(U0 + U0m)

[
bminπ

2

bmaxD2
+ k2

]
+

1

2
bD

(
D (U0)

b

)]
|U0 − c|2

]
b |ψ|2

|U0 − c|2
dz

+

∫ D

0

[
[D (U0)]

2

4
(U0 − 2cr − U0m)

]
b |ψ|2

|U0 − c|2
dz ≤ 0.

Since |U0 − c|2 ≥ ci
2 and U0m = U0min+U0max

2 , we have[
(U0min + U0m)

[
bminπ

2

bmaxD2
+ k2

]
+

1

2
bD

(
D (U0)

b

)]
ci

2

≤ [D (U0)]
2

4

(
2cr − U0min +

U0min + U0max

2

)
;
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i.e.,

c2i ≤ λ

[
cr +

U0max

4
− U0min

4

]
, (7)

where

λ =
[D (U0)]

2
max

|3U0min + U0max|
[

bminπ2

bmaxD2 + k2
]
+

∣∣∣bD (
D(U0)

b

)∣∣∣
min

Theorem 3.2. If λ < λc, where

λc =
(3U0max + U0min)−

√
5U2

0max − 3U2
0min + 14U0maxU0min

2
.

then the parabola c2i ≤ λ
[
cr +

U0max

4 − U0min

4

]
intersect the semi-circle[

cr −
U0min + U0max

2

]2
+ ci

2 ≤
[
U0max − U0min

2

]2
.

Proof: Semi-circle region (cf. [2]) is given by[
cr −

U0min + U0max

2

]2
+ ci

2 ≤
[
U0max − U0min

2

]2
. (8)

Substitute ( 7) in ( 8), we have

cr
2 + cr [λ− U0max − U0min] +

[
U0maxU0min +

λU0max

4
− λU0min

4

]
≤ 0.

For real roots, the discriminant parts is greater than or equal to zero, we have

λ2 − (3U0max − U0min)λ+ [U0max − U0min]
2 ≥ 0.

Solving for λ, we get

λ =
(3U0max + U0min)±

√
5U2

0max − 3U2
0min + 14U0maxU0min

2
,

If

λ =
(3U0max + U0min) +

√
5U2

0max − 3U2
0min + 14U0maxU0min

2
,

will lead to cr < U0 and hence, we have

λc =
(3U0max + U0min)−

√
5U2

0max − 3U2
0min + 14U0maxU0min

2
.

If λ < λc then the parabola given in ( 7) intersect with semi-circle given in ( 8).

Example 1. Let us consider the flow U0 = z + 1
2 , 1 ≤ z ≤ 2, b = eT0z,

T = T0(constant) .



On Homogeneous Shear Flows with Bottom Cross Section 1075

In this case U0min = 1
2 , U0max = 3

2 , λ < λc for different values of k and T0.

λ =
1

5
(

π2

eT0
+ k2

)
+ T0

,

Figure 1. cr vs ci (Intersection of parabola with semi circle)

Figure 2. cr vs ci (parabolic instability regions for distinct
values of k and T0 = 0)
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Figure 3. cr vs ci (parabolic instability regions for distinct
values of k and T0 = 1)

Figure 4. cr vs ci (parabolic instability regions for distinct
values of k and T0 = 2)

Example 2. Let us consider the flow U0 = sinz, 1 ≤ z ≤ 2, b = eT0z,
T = T0(constant) . In this case U0min = 0.8415, U0max = 1, λ < λc for different
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values of k and T0.

λ =
(0.5403023)

2

(3.5245)
[

π2

eT0
+ k2

]
+ T0

,

Figure 5. cr vs ci (Intersection of parabola with semi circle)

Figure 6. cr vs ci (parabolic instability regions for distinct
values of k and T0 = 0)
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Figure 7. cr vs ci (parabolic instability regions for distinct
values of k and T0 = 1)

Figure 8. cr vs ci (parabolic instability regions for distinct
values of k and T0 = 2)

4. Bounds for Growth Rate

Theorem 4.1. If ci > 0 then estimate for kci is

k2ci
2 ≤

π2bmin

D2bmax

∣∣∣bD (
D(U0)

b

)∣∣∣
max

(U0 − U0s) +

∣∣∣∣bD (
D(U0)

b

)2
∣∣∣∣
max

k2
.
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Proof: Multiplying ( 1) by bD
(

D(bϕ∗ )
b

)
, integrating and applying ( 2),

we get∫ D

0

b

∣∣∣∣D [
D(bϕ)

b

]∣∣∣∣2 dz − ∫ D

0

k2 + bD
(

D(U0)
b

)
U0 − c

 bϕD [
D(bϕ∗)

b

]
dz = 0. (9)

From ( 1) taking complex conjugate, we have

D

[
D(bϕ∗)

b

]
=

k2 + bD
(

D(U0)
b

)
U0 − c∗

ϕ∗. (10)

Substituting ( 10) in ( 9), comparing real parts, we get∫ D

0

b

∣∣∣∣∣D
[
|D(bϕ)|2

b

]∣∣∣∣∣
2

dz − k4
∫ D

0

b |ϕ|2 dz

−2k2
∫ D

0

bD
(

D(U0)
b

)
|U0 − c|2

(U0 − cr) b |ϕ|2 dz

−
∫ D

0

[
bD

(
D(U0)

b

)]2
|U0 − c|2

b |ϕ|2 dz = 0. (11)

Multiplying ( 1) by (bϕ∗), integrating , applying ( 2), comparing real and
imaginary parts we have∫ D

0

[
|D(bϕ)|2

b
+ k2b |ϕ|2

]
dz +

∫ D

0

bD
(

D(U0)
b

)
|U0 − c|2

(U0 − cr) b |ϕ|2 dz = 0, (12)

ci

∫ D

0

bD
(

D(U0)
b

)
|U0 − c|2

b |ϕ|2 dz = 0. (13)

Multiplying ( 12) by 2k2and adding with ( 11), we get∫ D

0

b

∣∣∣∣D [
D(bϕ)

b

]∣∣∣∣2 dz + k4
∫ D

0

b |ϕ|2 dz

−
∫ D

0

[
bD

(
D(U0)

b

)]2
|U0 − c|2

b |ϕ|2 dz + 2k2
∫ D

0

|D(bϕ)|2

b
dz = 0. (14)

Multiplying ( 13) by (cr−U0s)
ci

and adding with ( 12), we get∫ D

0

[
|D(bϕ)|2

b
+ k2b |ϕ|2

]
dz +

∫ D

0

bD
(

D(U0)
b

)
|U0 − c|2

(U0 − U0s) b |ϕ|2 dz = 0. (15)

Multiplying ( 15) by π2bmin

D2bmax
and subtracting from ( 14), we get
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0

[
b

∣∣∣∣D [
D(bϕ)

b

]∣∣∣∣2 dz − π2bmin

D2bmax

∫ D

0

|D(bϕ)|2

b
dz

]

+k2

[∫ D

0

|D(bϕ)|2

b
dz − π2bmin

D2bmax

∫ D

0

b |ϕ|2 dz

]

+k2
∫ D

0

|D(bϕ)|2

b
dz + k4

∫ D

0

b |ϕ|2 dz −
∫ D

0

[
bD

(
D(U0)

b

)]2
|U0 − c|2

b |ϕ|2 dz

− π2bmin

D2bmax

∫ D

0

bD
(

D(U0)
b

)
|U0 − c|2

(U0 − U0s) b |ϕ|2 dz = 0.

In the above equation first bracket, second bracket terms and third
term are positive, hence dropping the terms, we get

k4
∫ D

0

b |ϕ|2 dz

−
∫ D

0

 π2bmin

D2bmax
bD

(
D(U0)

b

)
(U0 − U0s) +

[
bD

(
D(U0)

b

)]2
|U0 − c|2

 b |ϕ|2 dz ≤ 0.

Since 1
|U0−c|2 ≤ 1

ci2
, we get

k2ci
2 ≤

π2bmin

D2bmax

∣∣∣bD (
D(U0)

b

)∣∣∣
max

(U0 − U0s) +

∣∣∣∣bD (
D(U0)

b

)2
∣∣∣∣
max

k2
;

i.e.,

k2ci
2 ≤

π2bmin

D2bmax

∣∣∣bD (
D(U0)

b

)∣∣∣
max

(U0 − U0s) +

∣∣∣∣bD (
D(U0)

b

)2
∣∣∣∣
max

k2
. (16)

Theorem 4.2. Howard’s conjecture kci → 0 as k → ∞.

Proof: From ( 16), it follows.

Theorem 4.3. If K(z) =
−bD

(
D(U0)

b

)
(U0−U0s)

≥ 0 then criterion for stability is that

0 ≤ K (z) ≤ π2bmin

D2bmax
.

Proof: From ( 16), we have

k2ci
2 ≤

[
bD

(
D(U0)

b

)]2
K(z)

[
K(z)− π2bmin

D2bmax

]
k2

.

It follows from the above equation ci = 0 for K (z) ≤ π2bmin

D2bmax
.

Hence the flow is stable.
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Theorem 4.4. For ci > 0, it is necessary that

k2 <


[
bD

(
D(U0)

b

)]2
−bD

(
D(U0)

b

)
(U0 − U0s)


z=zp

.

Proof: Substituting ( 10) in ( 9), comparing real and imaginary parts we get∫ D

0

b

∣∣∣∣D [
D(bϕ)

b

]∣∣∣∣2 dz + k2
∫ D

0

|D (bϕ)|2

b
dz

−k2
∫ D

0

bD
(

D(U0)
b

)
|U0 − c|2

(U0 − cr) b |ϕ|2 dz

−
∫ D

0

[
bD

(
D(U0)

b

)]2
|U0 − c|2

b |ϕ|2 dz = 0, (17)

k2ci

∫ D

0

bD
(

D(U0)
b

)
|U0 − c|2

b |ϕ|2 dz = 0. (18)

Multiplying ( 18) by (cr−U0s)
ci

and subtracting from ( 17), we get∫ D

0

b

∣∣∣∣D [
D(bϕ)

b

]∣∣∣∣2 dz + k2
∫ D

0

|D (bϕ)|2

b
dz

−k2
∫ D

0

bD
(

D(U0)
b

)
|U0 − c|2

(U0 − U0s) b |ϕ|2 dz

−
∫ D

0

[
bD

(
D(U0)

b

)]2
|U0 − c|2

b |ϕ|2 dz = 0.

∫ D

0

b

∣∣∣∣D [
D(bϕ)

b

]∣∣∣∣2 dz + k2
∫ D

0

|D (bϕ)|2

b
dz

−
∫ D

0

k2bD
(

D(U0)
b

)
(U0 − U0s) +

[
bD

(
D(U0)

b

)]2
|U0 − c|2

b |ϕ|2 dz = 0. (19)

From the above equation it follows that

k2bD

(
D (U0)

b

)
(U0 − U0s) +

[
bD

(
D (U0)

b

)]2
> 0;
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i.e.,

k2 <


[
bD

(
D(U0)

b

)]2
−bD

(
D(U0)

b

)
(U0 − U0s)


z=zp

.

Remark:
As λ = 2π

k , small wave number corresponds to large wave length.
Let the critical value be

kc
2 = Max

zΣ[0,D]


[
bD

(
D(U0)

b

)]2
−bD

(
D(U0)

b

)
(U0 − U0s)

 . (20)

It follows that k > kc implies the flow is stable provided critical value
of kc should be finite.

Example:

(1) Let U0 (z) = sin
(
z2
)
, b = z in 0 ≤ z ≤ 2π ,U0 changes its sign at

zs =
√
π. Using ( 20),we get k > kc = 4π, which implies stability of the

mode.
(2) LetU0 (z) = ez sin z, b = e2z in 0 ≤ z ≤ 2π U0 changes its sign at zs = π.

Using ( 20), we get k > kc = 2, which implies stability of the mode.

The new stability condition does not depend on any condition like T
′ ≤ 0 or

cr = U0s, as in [3]. When b = 1 or T = 0, this result reduces to [1].

5. Bounds for Amplification Factor

Theorem 5.1. The upper bound for amplification factor ci is given by

ci ≤

√√√√√√
[
k4

[
U0max−U0min

2

]2
+ 2k2

[
bD

(
D(U0)

b

)]
(U0 − U0s) +

[
bD

(
D(U0)

b

)]2]
max

π4b2min

D4b2max

.

Proof: Multiplying ( 13) by
(

cr−U0s

ci

) (
2k2

)
and subtracting from ( 11), we

get ∫ D

0

b

∣∣∣∣D [
D(bϕ)

b

]∣∣∣∣2 dz
−
∫ D

0

k4 + 2k2bD
(

D(U0)
b

)
(U0 − U0s) +

[
bD

(
D(U0)

b

)]2
|U0 − c|2

 b |ϕ|2 dz = 0.

Applying Rayleigh-Ritz inequality , 1
|U0−c|2 ≤ 1

ci2
, we get

π4b2min

D4b2max

∫ D

0

b |ϕ|2 dz ≤
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∫ D

0

k4c2i + 2k2bD
(

D(U0)
b

)
(U0 − U0s) +

[
bD

(
D(U0)

b

)]2
ci2

b |ϕ|2 dz.

Since ci ≤ U0max−U0min

2 , we have

ci ≤

√√√√√√
[
k4

[
U0max−U0min

2

]2
+ 2k2

[
bD

(
D(U0)

b

)]
(U0 − U0s) +

[
bD

(
D(U0)

b

)]2]
max

π4b2min

D4b2max

.

6. Conclusion

We study stability of incompressible inviscid homogeneous shear flows
with bottom cross section. We derived a parabolic instability region which in-
tersects with semi-circle region under some criterion. The parabolic instability
region depends on parameters like breadth function, shear function, vorticity
function which is important to decide stability or otherwise. Also we obtained
condition for stability, bounds for growth rate and amplification factor .We
proved Howard’s conjecture also.
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