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BI-INTERIOR SYSTEMS AND VARIOUS COMPLETENESS'

JU-MOK OH

ABSTRACT. We investigate the relationships between right (resp. left) in-
terior systems and right (resp. left) interior operators on complete gener-
alized residuated lattices. We show that the set induced by a right (resp.
left) interior operator is right (resp. left) join complete.

AMS Mathematics Subject Classification : 03E72, 54A40, 54B10.

Key words and phrases : Generalized residuated lattices, bi-partially or-
dered sets, right (resp. left) interior systems, right (resp. left) join com-
plete, right (resp. left) meet complete.

1. Introduction

Ko and Kim [4] introduced the notions of right (resp. left) interior systems in
a sense as the right (resp. left) lower bound on generalized residuated lattices.
In this paper, we examine the relationships between right (resp. left) interior
systems and right (resp. left) interior operators (see Section 3). Finally, we show
that the set M = {A € LX | I(A) = A}, where [ is a right (resp. left) interior
operator, is a right (resp. left) join complete (see Section 4).

2. Preliminaries
In this section, we present some preliminary concepts and properties.

Definition 2.1. [2, 5, 6, 7, 8] A structure (L,V,A\,®,—,=, 1, T) is called a
generalized residuated lattice if it satisfies the following three conditions:

(GR1) (L,V,A, T,1) is bounded where T is the upper bound and L is the
universal lower bound,

(GR2) (L,®, T) is a monoid where T is the identity,

(GR3) it satisfies a residuation; i.e., a @b <ciff a<b—ciff b<a=c.
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In this paper, we always assume that (L,A,V,®,—,=,T, 1) is a complete
generalized residuated lattice.

Lemma 2.2. [1, 3, 7] Let x,y,z € L. Let {z;}ier,{yi}tier € L. Then the
following hold.

(D) Ify<z thenzOy<zOz,z—oy<zcz—z,zoc<y—-z,z=>y<zc=z
and z =>x <y =x.

(2)
T — (/\ieF yi) T =), (Vier xz’) — Y= /\ier(xi — ),
E\/ier xl; = (Viervi
Nier ©i) = (Nier ¥i
x = (Nier ¥i
(\/iEF Iv) = (Vier‘ yl)
(Aier zi) = (ANier vi)

i€

T = yz) , (\/iel" xl) =Yy= /\iel“(xi = y)v

VAV I IVIV

>>>>>>
’1’1’121’1'1

(zoy)—z=2r—=y—=2) and (z0y) =>2z=y= (= 2).

s y=z2)=y=>(@—2)andz= (y—2)=y— (z=2).
zO(x=y) <yand (zx - y) Oz < y. Moreover, z < (x = y) — y and
(= y) =y
(r=y9)0z<2=(yo0z) andy®(z—=2)<z— (yoz2).
(z=y)oy=2)<z=>zand(y—2) 0=y <z — =z
(wéZ) (yoz)=(yoz) and (r—2) < (z0y) = (20Y).

y<ly—z)=@—2) and(z=y) < (y=2) - (z=2).
O)y%z<(sc—>y) (x—=2z)and (y=2) < (x=y) = (z = 2).

D) ax—y=T if and only if v <y. Similarly, x = y =T if and only if v < y.

(3)
(4) =
(5)
z <
(6)
(7)
(8) <
9) z <
(1
(1

Definition 2.3. [4, 5] Let X be a set. A map e : X x X — L is called an
r-partial order (or right-partial order) if it satisfies the following three conditions:
(O1) e%(z,z) =T forall xz € X,
(02) If e (x,y) = €% (y,x) = T where z,y € X, then z =y,
(R) e (z,y) @ % (y, 2) < ex(z,2) for all z,y,z € X.

A map e : X x X — L is called an [-partial order (or left partial order) if it
satisfies the following three conditions:
(01) e (z,2) =T for all 7 € X,
(02) If e (z,y) = e (y,2) = T where 2,y € X, then x =y,
(L) e (y,2) @ el (2, y) < el (x, 2) for all x,y, 2 € X.

The pair (X, €'y ) is called an r-partially ordered set (or right partially ordered
set).

The pair (X, elX) is called an [-partially ordered set (or left partially ordered
set).

The triple (X, e, efx) is called a bi-partially ordered set.

Using Lemma 2.2(7), one can have the following.
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Lemma 2.4. [4, 5] Let G C LX. Defineel, : GXxG — L andel, : GXG — L by
en(A,B) = /\xeX [A(z) = B(z)] and elC;(A,B) = /\wEX [A(z) = B(z)]. Then
(G, eq elc) is a bi-partially ordered set.

3. Bi-interior operators and bi-interior systems

In this section, we investigate the relationship between right (resp. left) inte-
rior systems and right (resp. left) interior operators.

Definition 3.1. A map I" : LX — L¥ is called an r-interior operator (or right
interior operator) on X if it satisfies the following three conditions:
(I1) I"(A) < A for all A € LX,
(I2) I"(A) < I" (I"(A)) for all A € LX,
(IR) e} x(A,B) <ef x (I"(A),I"(B)) for all A, B € LX.
A map I' : LX — LX is called an [-interior operator (or left interior operator)
on X if it satisfies the following three conditions:
(I1) I'(A) < A for all A € LX,
(I2) I'(A) < I (IZ(A)) for all A € LX,
(IL) €} x (A, B) <€\ « (I'(A),I'(B)) for all A, B € L.
The triple (X, I, Il) is called a bi-interior space.

Definition 3.2. Let H", H' C LX.

(1) A family H" is called an r-interior system (or right interior system) on X

if (a) A0k € H" for all A € H" and k € L, and (b) \/,.p A; € H" for all

{Ai}tier CH".

(2) A family H! is called an [-interior system (or left interior system) on X if (a)

k©A€ G forallk € Land A € H', and (b) \/,cp A; € H' for all {4;};cr C H'.
The triple (X, HT, Hl) is called a bi-interior system.

Remark 3.1. (1) Definitions 3.1-3.2 are consistent with those defined by Ko
and Kim [4, 5].

Let k € L. Let A € LX. Define four maps A0k, kOA, k — A k= A: X - L
by (A®Ek)(x) = A(x) Ok, (k© A)(z) =k A(z), (k = A)(x) = k — A(z),
(k= A)(zx) =k = A(z).

Lemma 3.3. Let k € L and let A, B € LX. Then the following hold.
(1) k<elx(A,A0k) and k < e\ (A k® A).
(2) Let I" : L — LX be an r-interior operator on X. If A < B, then I"(A) <
I"(B).
(3) Let I' : LX — LX be an l-interior operator on X. If A < B, then I'(A) <
I(B).
Proof. (1) Note that
€px (A AOK) = Npex [Ale) = (A(z) © k)] > K
and
eb (A kO A) = N\,cx [Ax) = (kO A(z))] > k.



1004 Ju-Mok Oh

(2) Let A < B where A, B € LX. By (IR),
T = ¢ (A, B) < e (I'(A), I'(B)) = Ayex [M(A)@) = I"(B)()].

By Lemma 2.2(11), I"(A) < I"(B).
(3) It can be similarly proved as in (2).
(]

Theorem 3.4. (1) Let I" : LX — LX be an r-interior operator on X. Then
the set Hy. = {A € LX | I"(A) = A} is an r-interior system on X.
(2) Let I' : LX — L* be an l-interior operator on X. Then the set Hl, =
{A e LX | I'(A) = A} is an l-interior system on X.
Proof. (1) Let A € H}. and k € L. Then
k- <elx(A,A®k) (by Lemma 3.3(1))

<elx (I"(A),I"(A®k)) (. I" is an r-interior operator)

=ex(AI"(AOk)) (- AcH).
By residuation, A ® k < I"(A ® k). On the other hand, I"(A® k) < A® k by

(I1). Hence A0 k=I"(A® k), and so Ak € HJ..
Let {A;}ier C Hj.. Then
I"(Vier 4i) > Vier I7(As)  (by Lemma 3.3(2))
<

On the other hand, I" (\/;cp Ai Vier 4i by (I1). Hence I" (\;crr 4i) =

\/iEF A; and \/iGF A; € H}‘r
Therefore H7j. is an r-interior system on X.
(2) It can be similarly proved as in (1). O
Lemma 3.5. Let A,B € LX. Then the following hold.
(1) Ao e}« (A, B) < B.
(2) elLX(A,B) ®A<LB.
Proof. (1) By residuation, one see that
Aoelx(A,B)<B iff A(z)©ex(A,B)<B(z)forallze X
iff e7x(A,B) < A(z)= B(z) for all z € X.
(2) It can be similarly done as in (1). O
Theorem 3.6. (1) Let H" be an r-interior system on X. Define It : LX — LX
by IT;-(A) =V {D € H"|D < A}. Then I}, is an r-interior operator such that
I (A) = \/ [Doelx (D, A)] forall A€ L* and Hf, =H'.
DeH™
(2) Let H' be an l-interior system on X. Define It : L — LX by I}, (A) =
\V{D € H'|D < A}. Then I\, is an l-interior operator such that
I (A) = \/ [é\x (D,A) @ D] forall Ae LX and H}, =H
H
DeH!
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(3) Let I" : L — LX be an r-interior operator on X. Then I po=1"
(4) Let I' : LX — LX be an l-interior operator on X. Then Ifql =1
I
Proof. (1) Claim 1: Ity (A) =\ pepr [D © €} x (D, A)] for all A € L.
Let I(A) = \/peyr [D @€} x (D, A)] where A € L*. Note that for all D €
H", we have D ® e x(D,A) € H" and D ® e} x (D, A) — A by Lemma 3.5(1).
Thus I(A) < I} (A). On the other hand,

I(A) = VDGHT [D © el x (DaAﬂ
> I3 (A) © epx (T (A), A) (0 Iy (4) € HT)
=17 (A) 0T =1I;(4).

Hence Claim 1 is proved.
Claim 2: Let A€ LX and D € H". Then D < A if and only if D < I%;.(A).
=) Assume D < A. Then I}, (A)=V{E € H'|[E <A} >D.
<) Assume D < I}, (A). Then D < I} (A)=\{E € H'|E < A} <A.
(C1) By definition, I%,,(A) < A for all A € L.
(C2) For all A € L,

Iyr (I (A)) =V A{D e H"|D < Iy (A)}
=V{DeH"|D <A} (by Claim 2)
= I (A).

Claim 3: For allk € L and A € LX, I (A) 0 k < I}, (AG k).
Note that
I, (A) ok =\/{DeH'|D<A}Ok
—\/{DOKD<ADeH
<\VI{DokDok<AokDokeH')
< I (AOk).

Claim 4: If A < B where A, B € LX, then I%,.(A) < I}, (B).

Assume A < B. Since {D € H"|D < A} C {D € H"|D < B}, we have
I3.(A) < Ty (B).
(CR) Let A, B € LX. Since

I (A) ©es (A, B) >1I4, (A®e (A, B)) (by Claim 3)
< Iy-(B) (by Lemma 3.5(1) and Claim 4),

we have by residuation that e x (A, B) < e} x (If-(A), I (B)).

Therefore I, is an r-interior operator.

Let A€ Hj, . Then A =1Iy.(A) =V{D € H" | D < A}, andso A € H".
On the other hand, let A € H". Then I}, (A)=\{De H | D<A} =A, and
so Ae Hj, .

(3) Claim 5: Let A € L* and let D € HY.. Then D < A if and only if
D <I"(4).

=) Assume D < A. By Lemma 3.3(2), I"(D) < I"(A). Since D € Hj,, we have
I"(D) = D. Hence D < I"(A).
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<) Assume D < I"(A). Since I"(A) < A, we have D < A.
Let A € L. Since I}}ITT(A) = V{DeH]. |D<A}, I"(A) € Hj. and
I"(A) < A, we have I"(A) < Iy, (A). On the other hand, note that

Iy (4) =VA{D e | D<A}
=\/{DeH} |D<I(A)} (by Claim 5)
> I"(A).
(2) and (4) can be similarly proved as in (1) and (3), respectively. O

By Theorem 3.6, we have the following.

Corollary 3.7. Let (X eX,eX) be a bi-partially ordered set.

(1) There is a one to one correspondence between the set of all r-interior oper-
ators on X and the set of all r-interior systems on X.

(2) There is a one to one correspondence between the set of all l-interior operators
on X and the set of all l-interior systems on X.

Definition 3.8. Let (X, €%, ey ) be a bi-partially ordered set. Define four maps
U’rv U’la ﬂra ﬂl: LX — LX by

Ur A(@) = Ayex lex (v,2) = AW)], b A@) = Ayex [k (v, 2) = A(y)]
e A@) = Ayex lex (@9) = AW)], i A@) = Ayex [k (z,9) = A(y)]

where A € LX.

Definition 3.9. Let (X, ey, elX) be a bi-partially ordered set. Define four maps
oIy, I LX — LX by

HA) (@) =Vyex [ex(@y) O Acx ek (2,y) = AR)]],
L(A) (@) =Vyex [Neex [k (z,y) = Az )] @ ex( Y]
I(A)(z) =V ex [ek(y,2) O Aex [e( y, A(2)]]
Ié(A)(x) = \/yeX [/\zeX [eX(y7 ) - A( @ eX y,a:)]

where A € LX.

Theorem 3.10. Let (X eX,eX) be a bi-partially ordered set. Let A,B € LX.
Then the following hold.

(1) U, and I] are r-interior operators. Moreover, I7 <|,.

(2) f; and I are r-interior operators. Moreover, 15 <{\.

(3) Uy and IL are l-interior operators. Moreover, I\ <|};.

(4) 1 and I} are l-interior operators. Moreover, I <{i,..

Proof. (1) We show that J},- is an r-interior operator.
(I1) Let A € LX. Then

br A(z) = Nyex lex(y,2) = Aly)] < ek (z,2) = A(z) =T = A(z) = A().
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(12) Let A € LX. Then
b (b A)(@) = Ayex [k (y,2) =4r A(y)]

= Nyex e (y,2) = A.ex [eX(z y) = A(2)]]

= Ayex Auex [€5(1,7) = €5 (5,5) = A(2)]] (by Lemma 2.2(2))
= Ayex Avex €5 (2) © ek (y,2)] = A(2)] (by Lemma 2.2(3))
= Neex [Vyex € (5:9) © €k (y,2)] = A(2)] (by Lemma 2.2(2))

= N.ex lekx(2,2) = A(z)]
=, A(z).

(IR) Let A, B € LX. Then
ezx (I Al B) = /\meX wr Az) ={r B(ZL‘)]
= Avex [Ayex [k (5.2) = Aly
> Avex Ayex [[ek (v 2) = A(
> Avex Ayex [A() = B) (
=elx (A, B).

Hence |},- is an r-interior operator.
We show that I is an r-interior operator.
(I1) Let A € LX. Then

LA (@) =Vyex [k @y) O Aex [k (2,9) = A(2)]]
< Vyex lex(@,9) © [k (2,y) = A(2)]]
< A(z) (by Lemma 2.2(5)).
(12) Let A e L.

Claim 1: N\_cx [ex(2,y) = A(2)] = N cx [ex (2,9) = [ (A)(2)]-
Since I7(A)(z) < A(z) by (I1), we have by Lemma 2.2(1) that
)

N ek (z9) = IHAE)] < N ex(zy) = A()].
zeX zeX
On the other hand, note that
Nwex [ (w,y) = IT(A)(w)]
= Awex [@x.9) = Vyex [€5 (0,9) © Aex [k (2:p) = AG)]]|
2 Nwex [€x(w,y) = [eX(w Y) O N.ex lek(z,y) = A(z)]]]

> Nwex Noex ek (2,y) = A(2)] (by residuation)

= N.ex [ek(zy) = A(2)].
Hence Claim 1 is proved.
Finally, we have

LI (A)(@) = Vyex [k (@) © Asex ek (2,9) = I (A)(2)]
= \/yex [e%(2,9) © N.ex lex (2,9) = A(2)]]  (by Claim 1)
= 17 (A)().
Hence I7(I7(A)) = I (A) for all A € LX.
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(IR) Let A, B € L*. By Lemma 2.2(8) and (10), we have

¢hx ((A). I} (B) = \yex Ui (A)(@) = I (B)(@)
= Avex [Vyex [€5(,9) © Aex [ (5:9) = A)]
= Vyex [€5(@9) © Aex [k (2,1) = B(:)]]]
> Nuex Ayex L€k (@) © Aex 5 (2. ) = A2)]]
= [ex(,9) © Acx [k (2:9) = B(2)]]]
= Noex Nyex A.ex [€x(2,9) = A)] = A.cx [€x(2,9) = B(2)]]
> Neex Nyex Noex ek (z,9) = A(2)] = [k (2,y) = B(2)]]

2 Naex Nyex N.ex [A(2) = B(2)]
=e} x (A, B).

Hence I7 is an r-interior operator.
We show I7 <|,.. Let A € L¥. Since

e (w,z) © e (z,y) © N.cx [ex(2,y) = A(2)]
< el (w,2) © e (z,y) © [y (w,
<ex(w,y) O ek (w,y) = A(w)] (b
< A(w) (by Lemma 2.2(5)),

we have by residuation that

ey (z,y) ® /\ [e%(z,y) = A(2)] < ex (w,z) = A(w) for all y,w € X,
zeX

which implies that

V [ex@y o N lex(zy) = AR < A\ lex(w,2) = Aw)].

yeX zeX weX

Hence I7(A) <l}, A for all A € LX.
(4) We show that 1, is an [-interior operator.
(I1) Let A € LX. Then

T Alz) = Ayex ek (@ y) = A(y)] < ek (z,2) = A(z) = A(z).
(I2) Let A € LX. Then
e (e A)[(»T) = Nyex lex (@, y) =1 A(y)]
Yy

= Muex [(5n9) > Asex [0 - AG)]

= Ayex Avex [k (@9) = ek (5,2) > AE)] - (by Lemma 2.2(2))

N N e [ ) © A, AL (o Lemma 22(3)

= Nuex [Vyex €5 (@,9) © ¢k (5,2)] = A(z)]  (by Lemma 2.2(2)
Avex [€5(@,2) = A)]
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(IL) Let A, B € LX. Then

eLx (ﬂr A,y ) = \zex mr (m) — P ( )]
= Nsex |Nyex l€x (@ y) = AW)] = A,ex [ (2,y) = B(y)]
[

(z )
> Neex Nyex {6 (z,y) = AW)] = Ayex lex (z,y) = B(y)]
) (

]

]
> /\zEX /\yeX [A(y) — B(y)] (by Lemma 2.2(10))
= eLX(A B).

Hence {,- is an [l-interior operator.
We show that I} is an [-interior operator.
(I1) Let A € LX. Then

L(A) () =Vyex [Niex [ek(y.2) = A(2)] © ek (y, )]
X x [[ex (y,2) = A(2)] © ek (y, 2)]

() (by Lemma 2.2(5)).

INIA

(I2) Let A € LX.

Claim 4: N,ex €5 (5, 2) > A=) = Aex [€5w2) = B(A)(=)].
Since I} (A)(z) < A(z) by (I1), we have by Lemma 2.2(1) that

A lex(y.2) = BAE)] < A [ex(y.2) = Az)].

zeX zeX

On the other hand, note that

Nwex [e5 (v, w) = I5(A) (w)]

= Auwex |5 W) = Viex [Nuex [k (3,2) > A(2)] @ ek (p,w)] |
> Awex 5 W, w) = [Asex [k (v, 2) = A(2)] © ek (y,w)]]

> Nwex Noex ek (y, 2) = A(2)] (by residuation)

= Neex [k (y,2) = A(2)].-

Hence Claim 4 is proved.
Finally, we have

I5(I5(A))(x) x [Nex [k (v, 2) = I(A)(2)] © ek (y, 7)]

Vyex [Aze
\/l [ cex ek (Y, 2) = A(2)] © ek (y, )] (by Claim 4)
15

yeX
(A)(x

Hence I4(I4(A)) = IL(A) for all A € LX.
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(IR) Let A, B € L*. By Lemma 2.2(8) and (10), we have

epx (13(A), I3(B)) = Apex [12(A) () = I(B) ()]
= Naex [Vyex [Niex ek (¥ 2) = A(2)] © ek (v, 2)]

.
= Vyex [Nuex [k (:2) = B © ¢ (4,2)]
> Nvex Ayex [Avex [€5 (5,2) = A=) © € (4,2)]

= [Nsex 5 (0 2) > B © e (y,2)]]

> Noex /\yex [/\ZGX [ (y,2) = A(2)] = Nex ek (y,2) = B(Z)]]
> Noex Nyex Neex ek (v, 2) —(> A(2)] = [ex (y,2) = B(2)]]

> Nvex Myex Avex [A() = B(z)] (by Lemma 2.2(10))
=e\ < (A, B).

Hence I} is an I-interior operator.
We show I} <f,. Let A € LX. Since

Neex [ex(y,2) = A(2)] © e (y,2) © e (2, w)
< Neex lex(y,2) = AR)] © ex (y,w)  (by (R))
<lex (y,w) = A(w)] © e (y, w)

< A(w) (by Lemma 2.2(5)),

we have by residuation that
N lex(y,2) = AR)] 0 e (y, ) < ek (w,w) = A(w) for all y,w € X,
zeX

which implies that

V A exly,2) = Ao ek (y,2)| < N\ [ex(e,w) — Aw)].
yeX LzeX weX
Hence IL(A) <f), A for all A € L¥.
(2) and (3) can be similarly proved. O

4. Various completeness

In this section, we demonstrate that the set M = {A € L* | I(A A}
where [ is a right (resp. left) interior operator, is a right (resp. left) join
complete.

Definition 4.1. [5] Let (X, e’ ) be an r-partially ordered set. Let A € LX.

(1) A point xq is called an r-join (or right-join) of A, denoted by xg = U, A, if
it satisfies

(RJ1) A(z) < e’ (x,x0) for all z € X,

(RJ2) Ayex [Alz) = e (2, )] < e (wo,y) for all y € X.

(2) A point x; is called an r-meet (or right-meet) of A, denoted by z; =, A4, if
it satisfies

(RM1) A(x) < €’ (z1,z) for all z € X,
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(RM2) A cx [A(z) = e (y,7)] < ey (y,x1) for all y € X.

Let (X, elX) be an [-partially ordered set. Let A € LX.
(3) A point g is called an [-join (or left-join) of A, denoted by xg = LI A, if it
satisfies
(LJ1) A(z) < €l (x,20) for all 7 € X,
(LI2) Ayex [A(z) = e (z,y)] < €l (zo,y) for all y € X.
(4) A point 1 is called an I-meet (or left-meet) of A, denoted by xz1 =M A, if it
satisfies
(LM1) A(x) < ek (x1,) for all z € X,
(LM2) A,cx [A(@) = e (y,2)] <€l (y,x1) forall y € X.
(5) An r-partially ordered set (X, €’ ) is r-join complete (resp. r-meet complete)
if there exists L, A (resp. M,A) for all A € LX.
(6) An r-partially ordered set (X,e%) is r-complete if is r-join complete and
r-meet complete.
(7) An [-partially ordered set (X, elX) is [-join complete( resp. l-meet complete)
if there exists Lj A (resp. M;A) for all A € L¥.
(8) An Il-partially ordered set (X, elX) is [-complete if it is l-join complete and
[-meet complete.

Lemma 4.2. [5] Let (X, 65(7elX) be a bi-partially ordered set. Let xg,x1 € X.
Let A € LX. Then the following hold.

(1) xo = U, A if and only if N\ ¢ x [A(x) = e (v,y)] = € (w0,y) for ally € X.
(2) 1 =1, A if and only if N\, cx [A(x) — e (y,7)] = e (y,71) for ally € X.
(3) mo = LA if and only if \,cx [Alx) — e (z,y)] = €l (zo,y) for ally € X.
(4) x1 = A if and only if \,cx [Alx) = ek (y,2)] = € (y, 1) for ally € X.
(5) U, A, M.A, ;A and T A are unique if each exists.

Theorem 4.3. (1) Let I" : L*X — LX be an r-interior operator. Let H}, =
{Ae LX|I"(A) = A}. Then (H}r,e;{;l) is r-join complete where

LU=\ [A0U(A)] foral¥eL".
A€HY,

(2) Let I' : L — L™ be an l-interior operator. Let H,, = {A € LX | I'(A)
A}. Then (H}L,e;ﬂ ) is [-join complete where
Il

L= \/ [®(A)0A] foral¥eL"
AeH!,
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Proof. (1) Let ¥ : HY. — L be a map. Note that for all B € L¥,

Naciy, [WA) = €heny, (A B)] = Aacry, [¥(4) = e [A(@) = B(@)]]
= Aacay, Auex [¥(4) = [A(@) = B(2)]]  (by Lemma 2.2(2))
= Nacay, Avex [[A() © W(4)] = B(z)]  (by Lemma 2.2(3))
)

= Nvex [Vacn;, [A@) @ 9(A)] = B(x)|  (by Lemma 22(2))
= heny, (Vaca;, (A0 0(4)],B).

By Lemma 4.2, U,V = VAEH}"T [Ae®(A4)].

(2) Let ¥ : H!, — L be a map. Note that for all B € H,,

Aca, |#A) = el (8| = Aycrn, [94) > vy [4(0) = B
— Ascat, Avex [ (4)  [4{0) > B (by Lemuma 2(2)

= Acrr, Avex [0(4) © A@)] - B(x)]  (by Lemma 2.2(3)

= Avex [vAeHz [w < ) A(@)] = B(x)|  (by Lemma 2.2(2))

_6 (VAEHZ Al,B).

By Lemma 4.2, LU = \/AEHll [®(A) © A].
I

By Theorems 3.10 and 4.3, we have the following.

Corollary 4.4. (1) The pair (Hf,',e%;r) is r-join complete where I™ =|},. or
e
(2) The pair (H}l,elHl ) is l-join complete where I' =|l; or f),..

Il

Lemma 4.5. (1) Let {k;}ier C L and {A;}ier C HY}. where I =, or .
Then /\ieF [kl — Al] S H}}.

(2) Let {k; }ier € L and {A; }ier C H}, where I' =|; or .. Then Nier ki = Aj] €
H}l.

Proof. (1) Case 1: I" =|,. Note that

br (Aer [ki = Ai]) (2) = yeX [e5 (v, %) = Nier [k = Ai] (9)]
= Ayex Nier [€x (v, 2) = [ki = Ai(y)]] (by Lemma 2.2(2))
= Ayex Nier [Fi = [ex (y,2) = Ai(y)]] (by Lemma 2.2(4))

et [Fi = Nyex €5 (5:2) = Aiy)] (by Lemma 2.2(2))
Noar [ls >l A1(2)
(i

rlki = Ai(z)] (- A; € Hy)
ier (ki = Aj]) (2).

Hence A;cp [ki — Ai] € HJj .
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Case 2: I" =1);. Note that

M (Aier ki = Ai]) () = Ayex [ek (@) = Aier (ki = Ai] (v)]
= Ayex Nier [€x (2.9) = [k — Ai(y)]] (by Lemma 2.2(2))

= /\yeX Nier [kl — [elX (z,y) = Az(y)]] (by Lemma 2.2(4))

= Nier |ki = Nyex [el (z,y) = Ai(y)]| (by Lemma 2.2(2))

= Nier [ki =M Ai(z)]

= /\ier (ki — Ai(2)] (. Ai € HY»)

= ( i€l [kz — AiD (37)

Hence A,cp [ki — Ai] € HY,.
(2) Case 1: I' =|};. Note that

b (Nier ki = AJ)) () =
/\yEX /\161" [6X(ya )l — [ks

= /\yeX /\zEF [k = [ (y,7) i (
= Nier [k = Ayex [k (5:2) > 4i(»)]] (by Lemma 2.2(2))
= Nier [ki = As(2)]
=/\er[k = Ai(z)] (A € Hy)
( ’LEF k :>AD(Q:)
Hence \;cp [ki = Ai] € H,.

Case 2: I' ={,. Note that

e (Aier ki = Ail) (@) = Ayex [k @,9) = Aser ki = Al (v)]
= Nyex Nier [ex (2, y) = [ki = Ai(y)]] (by Lemma 2.2(2))
= Nyex Nier [ki = [ex (2, y) = Ai(y)]]_ (by Lemma 2.2(4))
= Nier [Fi = Ayex €5 (@,9) = Ai()]| (by Lemma 2.2(2))

= Nier (ki =10 Ai(2)]
Nier [ki = Ai(2)] (- A; € Hp)
( ieT [kl = Al]) (IZ?)

Hence \;cp [ki = Ai] € HY, . H

Theorem 4.6. (1) The pair (H}'T, e}'{}-r) is r-complete where I" =l or ;.

(2) The pair (Hﬁl,elHl ) is l-complete where I' =|; or .
Il

Proof. (1) By Theorems 3.10 and 4.3, (Hfr,e’;q;) is r-join complete. It is

enough to show that (H}}, e%p) is r-meet complete.
Let ¥ : Hj, — L be a map. Note that for all B € H},,
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Nacr, [P(A) = €y (B A)] = ey, [9(A) = Ayex [B(2) = A(2)]
= Nacry, Awex [¥(4) = [Blz) > A(x)]]  (by Lemma 2.2(2)
= Aaery, Nvex [B(@) = [¥(4) = A@)]]  (by Lemma 2.2(4)

= Avex [B) = Ascny, [¥(4) = A@)]]  (by Lemma 2.2(2))
= e?{;, (Bv /\AEH;,. [(F(A) = A]) .
By Lemmas 4.2 and 4.5, M, = A g, [9(A) = A]. Hence (H};,e;[;r) is
r-meet complete.

(2) By Theorems 3.10 and 4.3, (HI,, ﬁq, ) is [-join complete. It is enough to
Il

show that < e lH, ) is [-meet complete.

Let U : Hf,l—>Lbeamap For all B € H!,,

Aacay, |#0)= ey (B.A)] = Aca, [¥(4) = Avex [B(@) > A@)]

= Naemt, Noex [¥(4) = [B(z) = A(z)]]  (by Lemma 2.2(2))
= Naent, Noex [B(z) = [¥(4) = A(z)]]  (by Lemma 2.2(4))
)

= Nuex [B@) = Nacan, [0(4) = A@)]| (b Lemma 2.2(2)
= eyt (B Aacn, [0(4) = 4]).

By Lemmas 4.2 and 4.5, MV = /\AeHll [P(A) = A]. Hence (H},,eﬁql ) is
I 1l

[-meet complete. O
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