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BI-INTERIOR SYSTEMS AND VARIOUS COMPLETENESS†

JU-MOK OH

Abstract. We investigate the relationships between right (resp. left) in-
terior systems and right (resp. left) interior operators on complete gener-

alized residuated lattices. We show that the set induced by a right (resp.

left) interior operator is right (resp. left) join complete.
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1. Introduction

Ko and Kim [4] introduced the notions of right (resp. left) interior systems in
a sense as the right (resp. left) lower bound on generalized residuated lattices.
In this paper, we examine the relationships between right (resp. left) interior
systems and right (resp. left) interior operators (see Section 3). Finally, we show
that the set M =

{
A ∈ LX | I(A) = A

}
, where I is a right (resp. left) interior

operator, is a right (resp. left) join complete (see Section 4).

2. Preliminaries

In this section, we present some preliminary concepts and properties.

Definition 2.1. [2, 5, 6, 7, 8] A structure (L,∨,∧,⊙,→,⇒,⊥,⊤) is called a
generalized residuated lattice if it satisfies the following three conditions:
(GR1) (L,∨,∧,⊤,⊥) is bounded where ⊤ is the upper bound and ⊥ is the
universal lower bound,
(GR2) (L,⊙,⊤) is a monoid where ⊤ is the identity,
(GR3) it satisfies a residuation; i.e., a⊙ b ≤ c iff a ≤ b → c iff b ≤ a ⇒ c.
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In this paper, we always assume that (L,∧,∨,⊙,→,⇒,⊤,⊥) is a complete
generalized residuated lattice.

Lemma 2.2. [1, 3, 7] Let x, y, z ∈ L. Let {xi}i∈Γ, {yi}i∈Γ ⊆ L. Then the
following hold.
(1) If y ≤ z, then x⊙y ≤ x⊙z, x → y ≤ x → z, z → x ≤ y → x, x ⇒ y ≤ x ⇒ z
and z ⇒ x ≤ y ⇒ x.
(2)

x →
(∧

i∈Γ yi
)

=
∧

i∈Γ (x → yi) ,
(∨

i∈Γ xi

)
→ y =

∧
i∈Γ(xi → y),(∨

i∈Γ xi

)
→

(∨
i∈Γ yi

)
≥

∧
i∈Γ (xi → yi) ,(∧

i∈Γ xi

)
→

(∧
i∈Γ yi

)
≥

∧
i∈Γ (xi → yi) ,

x ⇒
(∧

i∈Γ yi
)

=
∧

i∈Γ (x ⇒ yi) ,
(∨

i∈Γ xi

)
⇒ y =

∧
i∈Γ(xi ⇒ y),(∨

i∈Γ xi

)
⇒

(∨
i∈Γ yi

)
≥

∧
i∈Γ (xi ⇒ yi) ,(∧

i∈Γ xi

)
⇒

(∧
i∈Γ yi

)
≥

∧
i∈Γ (xi ⇒ yi) .

(3) (x⊙ y) → z = x → (y → z) and (x⊙ y) ⇒ z = y ⇒ (x ⇒ z).
(4) x → (y ⇒ z) = y ⇒ (x → z) and x ⇒ (y → z) = y → (x ⇒ z).
(5) x ⊙ (x ⇒ y) ≤ y and (x → y) ⊙ x ≤ y. Moreover, x ≤ (x ⇒ y) → y and
x ≤ (x → y) ⇒ y.
(6) (x ⇒ y)⊙ z ≤ x ⇒ (y ⊙ z) and y ⊙ (x → z) ≤ x → (y ⊙ z).
(7) (x ⇒ y)⊙ (y ⇒ z) ≤ x ⇒ z and (y → z)⊙ (x → y) ≤ x → z.
(8) (x ⇒ z) ≤ (y ⊙ x) ⇒ (y ⊙ z) and (x → z) ≤ (x⊙ y) → (z ⊙ y).
(9) x → y ≤ (y → z) ⇒ (x → z) and (x ⇒ y) ≤ (y ⇒ z) → (x ⇒ z).
(10) y → z ≤ (x → y) → (x → z) and (y ⇒ z) ≤ (x ⇒ y) ⇒ (x ⇒ z).
(11) x → y = ⊤ if and only if x ≤ y. Similarly, x ⇒ y = ⊤ if and only if x ≤ y.

Definition 2.3. [4, 5] Let X be a set. A map erX : X × X → L is called an
r-partial order (or right-partial order) if it satisfies the following three conditions:
(O1) erX(x, x) = ⊤ for all x ∈ X,
(O2) If erX(x, y) = erX(y, x) = ⊤ where x, y ∈ X, then x = y,
(R) erX(x, y)⊙ erX(y, z) ≤ erX(x, z) for all x, y, z ∈ X.

A map elX : X ×X → L is called an l-partial order (or left partial order) if it
satisfies the following three conditions:
(O1) elX(x, x) = ⊤ for all x ∈ X,
(O2) If elX(x, y) = elX(y, x) = ⊤ where x, y ∈ X, then x = y,
(L) elX(y, z)⊙ elX(x, y) ≤ elX(x, z) for all x, y, z ∈ X.

The pair (X, erX) is called an r-partially ordered set (or right partially ordered
set).

The pair
(
X, elX

)
is called an l-partially ordered set (or left partially ordered

set).
The triple

(
X, erX , elX

)
is called a bi-partially ordered set.

Using Lemma 2.2(7), one can have the following.
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Lemma 2.4. [4, 5] Let G ⊆ LX . Define erG : G×G → L and elG : G×G → L by
erG(A,B) =

∧
x∈X [A(x) ⇒ B(x)] and elG(A,B) =

∧
x∈X [A(x) → B(x)]. Then(

G, erG, e
l
G

)
is a bi-partially ordered set.

3. Bi-interior operators and bi-interior systems

In this section, we investigate the relationship between right (resp. left) inte-
rior systems and right (resp. left) interior operators.

Definition 3.1. A map Ir : LX → LX is called an r-interior operator (or right
interior operator) on X if it satisfies the following three conditions:
(I1) Ir(A) ≤ A for all A ∈ LX ,
(I2) Ir(A) ≤ Ir (Ir(A)) for all A ∈ LX ,
(IR) erLX (A,B) ≤ erLX (Ir(A), Ir(B)) for all A,B ∈ LX .

A map I l : LX → LX is called an l-interior operator (or left interior operator)
on X if it satisfies the following three conditions:
(I1) I l(A) ≤ A for all A ∈ LX ,
(I2) I l(A) ≤ I l

(
I l(A)

)
for all A ∈ LX ,

(IL) elLX (A,B) ≤ elLX

(
I l(A), I l(B)

)
for all A,B ∈ LX .

The triple
(
X, Ir, I l

)
is called a bi-interior space.

Definition 3.2. Let Hr, H l ⊆ LX .
(1) A family Hr is called an r-interior system (or right interior system) on X
if (a) A ⊙ k ∈ Hr for all A ∈ Hr and k ∈ L, and (b)

∨
i∈Γ Ai ∈ Hr for all

{Ai}i∈Γ ⊆ Hr.
(2) A family H l is called an l-interior system (or left interior system) on X if (a)
k⊙A ∈ Gl for all k ∈ L and A ∈ H l, and (b)

∨
i∈Γ Ai ∈ H l for all {Ai}i∈Γ ⊆ H l.

The triple
(
X,Hr, H l

)
is called a bi-interior system.

Remark 3.1. (1) Definitions 3.1-3.2 are consistent with those defined by Ko
and Kim [4, 5].

Let k ∈ L. LetA ∈ LX . Define four mapsA⊙k, k⊙A, k → A, k ⇒ A : X → L
by (A ⊙ k)(x) = A(x) ⊙ k, (k ⊙ A)(x) = k ⊙ A(x), (k → A)(x) = k → A(x),
(k ⇒ A)(x) = k ⇒ A(x).

Lemma 3.3. Let k ∈ L and let A,B ∈ LX . Then the following hold.
(1) k ≤ erLX (A,A⊙ k) and k ≤ elLX (A, k ⊙A).

(2) Let Ir : LX → LX be an r-interior operator on X. If A ≤ B, then Ir(A) ≤
Ir(B).
(3) Let I l : LX → LX be an l-interior operator on X. If A ≤ B, then I l(A) ≤
I l(B).

Proof. (1) Note that

erLX (A,A⊙ k) =
∧

x∈X [A(x) ⇒ (A(x)⊙ k)] ≥ k

and
elLX (A, k ⊙A) =

∧
x∈X [A(x) → (k ⊙A(x))] ≥ k.
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(2) Let A ≤ B where A,B ∈ LX . By (IR),

⊤ = erLX (A,B) ≤ erLX (Ir(A), Ir(B)) =
∧

x∈X [Ir(A)(x) ⇒ Ir(B)(x)] .

By Lemma 2.2(11), Ir(A) ≤ Ir(B).
(3) It can be similarly proved as in (2).

□

Theorem 3.4. (1) Let Ir : LX → LX be an r-interior operator on X. Then
the set Hr

Ir =
{
A ∈ LX | Ir(A) = A

}
is an r-interior system on X.

(2) Let I l : LX → LX be an l-interior operator on X. Then the set H l
Il ={

A ∈ LX | I l(A) = A
}
is an l-interior system on X.

Proof. (1) Let A ∈ Hr
Ir and k ∈ L. Then

k ≤ erLX (A,A⊙ k) (by Lemma 3.3(1))
≤ erLX (Ir(A), Ir(A⊙ k)) (∵ Ir is an r-interior operator)
= erLX (A, Ir(A⊙ k)) (∵ A ∈ Hr

Ir ) .

By residuation, A ⊙ k ≤ Ir(A ⊙ k). On the other hand, Ir(A ⊙ k) ≤ A ⊙ k by
(I1). Hence A⊙ k = Ir(A⊙ k), and so A⊙ k ∈ Hr

Ir .
Let {Ai}i∈Γ ⊆ Hr

Ir . Then

Ir
(∨

i∈Γ Ai

)
≥

∨
i∈Γ I

r(Ai) (by Lemma 3.3(2))
=

∨
i∈Γ Ai (∵ Ai ∈ Hr

Ir ) .

On the other hand, Ir
(∨

i∈Γ Ai

)
≤

∨
i∈Γ Ai by (I1). Hence Ir

(∨
i∈Γ Ai

)
=∨

i∈Γ Ai and
∨

i∈Γ Ai ∈ Hr
Ir .

Therefore Hr
Ir is an r-interior system on X.

(2) It can be similarly proved as in (1). □

Lemma 3.5. Let A,B ∈ LX . Then the following hold.
(1) A⊙ erLX (A,B) ≤ B.

(2) elLX (A,B)⊙A ≤ B.

Proof. (1) By residuation, one see that

A⊙ erLX (A,B) ≤ B iff A(x)⊙ erLX (A,B) ≤ B(x) for all x ∈ X

iff erLX (A,B) ≤ A(x) ⇒ B(x) for all x ∈ X.

(2) It can be similarly done as in (1). □

Theorem 3.6. (1) Let Hr be an r-interior system on X. Define IrHr : LX → LX

by IrHr (A) =
∨
{D ∈ Hr|D ≤ A}. Then IrHr is an r-interior operator such that

IrHr (A) =
∨

D∈Hr

[D ⊙ erLX (D,A)] for all A ∈ LX and Hr
Ir
Hr

= Hr.

(2) Let H l be an l-interior system on X. Define I lHl : L
X → LX by I lHl(A) =∨{

D ∈ H l|D ≤ A
}
. Then I lHl is an l-interior operator such that

I lHl(A) =
∨

D∈Hl

[
elLX (D,A)⊙D

]
for all A ∈ LX and H l

Il

Hl
= H l.
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(3) Let Ir : LX → LX be an r-interior operator on X. Then IrHr
Ir

= Ir.

(4) Let I l : LX → LX be an l-interior operator on X. Then I l
Hl

Il

= I l.

Proof. (1) Claim 1: IrHr (A) =
∨

D∈Hr

[
D ⊙ erLX (D,A)

]
for all A ∈ LX .

Let I(A) =
∨

D∈Hr

[
D ⊙ erLX (D,A)

]
where A ∈ LX . Note that for all D ∈

Hr, we have D ⊙ erLX (D,A) ∈ Hr and D ⊙ erLX (D,A) → A by Lemma 3.5(1).
Thus I(A) ≤ IrHr (A). On the other hand,

I(A) =
∨

D∈Hr

[
D ⊙ erLX (D,A)

]
≥ IrHr (A)⊙ eLX (IrHr (A), A) (∵ IrHr (A) ∈ Hr)
= IrHr (A)⊙⊤ = IrHr (A).

Hence Claim 1 is proved.
Claim 2: Let A ∈ LX and D ∈ Hr. Then D ≤ A if and only if D ≤ IrHr (A).

⇒) Assume D ≤ A. Then IrHr (A) =
∨
{E ∈ Hr|E ≤ A} ≥ D.

⇐) Assume D ≤ IrHr (A). Then D ≤ IrHr (A) =
∨
{E ∈ Hr|E ≤ A} ≤ A.

(C1) By definition, IrHr (A) ≤ A for all A ∈ LX .
(C2) For all A ∈ LX ,

IrHr (IrHr (A)) =
∨

{D ∈ Hr|D ≤ IrHr (A)}
=

∨
{D ∈ Hr|D ≤ A} (by Claim 2)

= IrHr (A).

Claim 3: For all k ∈ L and A ∈ LX , IrHr (A)⊙ k ≤ IrHr (A⊙ k).
Note that

IrHr (A)⊙ k =
∨

{D ∈ Hr|D ≤ A} ⊙ k
=

∨
{D ⊙ k|D ≤ A,D ∈ Hr}

≤
∨
{D ⊙ k|D ⊙ k ≤ A⊙ k,D ⊙ k ∈ Hr}

≤ IrHr (A⊙ k).

Claim 4: If A ≤ B where A,B ∈ LX , then IrHr (A) ≤ IrHr (B).
Assume A ≤ B. Since {D ∈ Hr|D ≤ A} ⊆ {D ∈ Hr|D ≤ B}, we have

IrHr (A) ≤ IrHr (B).
(CR) Let A,B ∈ LX . Since

IrHr (A)⊙ erLX (A,B) ≥ IrHr

(
A⊙ erLX (A,B)

)
(by Claim 3)

≤ IrHr (B) (by Lemma 3.5(1) and Claim 4),

we have by residuation that erLX (A,B) ≤ erLX (IrHr (A), IrHr (B)).
Therefore IrHr is an r-interior operator.
Let A ∈ Hr

Ir
Hr

. Then A = IrHr (A) =
∨
{D ∈ Hr | D ≤ A}, and so A ∈ Hr.

On the other hand, let A ∈ Hr. Then IrHr (A) =
∨
{D ∈ Hr | D ≤ A} = A, and

so A ∈ Hr
Ir
Hr

.

(3) Claim 5: Let A ∈ LX and let D ∈ Hr
Ir . Then D ≤ A if and only if

D ≤ Ir(A).
⇒) Assume D ≤ A. By Lemma 3.3(2), Ir(D) ≤ Ir(A). Since D ∈ Hr

Ir , we have
Ir(D) = D. Hence D ≤ Ir(A).
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⇐) Assume D ≤ Ir(A). Since Ir(A) ≤ A, we have D ≤ A.
Let A ∈ LX . Since IrHr

Ir
(A) =

∨
{D ∈ Hr

Ir | D ≤ A}, Ir(A) ∈ Hr
Ir and

Ir(A) ≤ A, we have Ir(A) ≤ IrHr
Ir
(A). On the other hand, note that

IrHr
Ir
(A) =

∨
{D ∈ Hr

Ir | D ≤ A}
=

∨
{D ∈ Hr

Ir | D ≤ Ir(A)} (by Claim 5)
≥ Ir(A).

(2) and (4) can be similarly proved as in (1) and (3), respectively. □

By Theorem 3.6, we have the following.

Corollary 3.7. Let
(
X, erX , elX

)
be a bi-partially ordered set.

(1) There is a one to one correspondence between the set of all r-interior oper-
ators on X and the set of all r-interior systems on X.
(2) There is a one to one correspondence between the set of all l-interior operators
on X and the set of all l-interior systems on X.

Definition 3.8. Let
(
X, erX , elX

)
be a bi-partially ordered set. Define four maps

⇓r, ⇓l, ⇑r, ⇑l: L
X → LX by

⇓r A(x) =
∧

y∈X [erX(y, x) ⇒ A(y)] , ⇓l A(x) =
∧

y∈X

[
elX(y, x) → A(y)

]
,

⇑r A(x) =
∧

y∈X [erX(x, y) → A(y)] , ⇑l A(x) =
∧

y∈X

[
elX(x, y) ⇒ A(y)

]
where A ∈ LX .

Definition 3.9. Let
(
X, erX , elX

)
be a bi-partially ordered set. Define four maps

Ir1 , I
l
1, I

r
2 , I

l
2 : LX → LX by

Ir1 (A)(x) =
∨

y∈X

[
erX(x, y)⊙

∧
z∈X [erX(z, y) ⇒ A(z)]

]
,

I l1(A)(x) =
∨

y∈X

[∧
z∈X

[
elX(z, y) → A(z)

]
⊙ elX(x, y)

]
,

Ir2 (A)(x) =
∨

y∈X

[
elX(y, x)⊙

∧
z∈X

[
elX(y, z) ⇒ A(z)

]]
,

I l2(A)(x) =
∨

y∈X

[∧
z∈X [erX(y, z) → A(z)]⊙ erX(y, x)

]
where A ∈ LX .

Theorem 3.10. Let
(
X, erX , elX

)
be a bi-partially ordered set. Let A,B ∈ LX .

Then the following hold.
(1) ⇓r and Ir1 are r-interior operators. Moreover, Ir1 ≤⇓r.
(2) ⇑l and Ir2 are r-interior operators. Moreover, Ir2 ≤⇑l.
(3) ⇓l and I l1 are l-interior operators. Moreover, I l1 ≤⇓l.
(4) ⇑r and I l2 are l-interior operators. Moreover, I l2 ≤⇑r.

Proof. (1) We show that ⇓r is an r-interior operator.
(I1) Let A ∈ LX . Then

⇓r A(x) =
∧

y∈X [erX(y, x) ⇒ A(y)] ≤ erX(x, x) ⇒ A(x) = ⊤ ⇒ A(x) = A(x).
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(I2) Let A ∈ LX . Then

⇓r (⇓r A)(x) =
∧

y∈X [erX(y, x) ⇒⇓r A(y)]

=
∧

y∈X

[
erX(y, x) ⇒

∧
z∈X [erX(z, y) ⇒ A(z)]

]
=

∧
y∈X

∧
z∈X [erX(y, x) ⇒ [erX(z, y) ⇒ A(z)]] (by Lemma 2.2(2))

=
∧

y∈X

∧
z∈X [[erX(z, y)⊙ erX(y, x)] ⇒ A(z)] (by Lemma 2.2(3))

=
∧

z∈X

[∨
y∈X [erX(z, y)⊙ erX(y, x)] ⇒ A(z)

]
(by Lemma 2.2(2))

=
∧

z∈X [erX(z, x) ⇒ A(z)]
=⇓r A(x).

(IR) Let A,B ∈ LX . Then

erLX (⇓r A,⇓r B) =
∧

x∈X [⇓r A(x) ⇒⇓r B(x)]

=
∧

x∈X

[∧
y∈X [erX(y, x) ⇒ A(y)] ⇒

∧
y∈X [erX(y, x) ⇒ B(y)]

]
≥

∧
x∈X

∧
y∈X

[
[erX(y, x) ⇒ A(y)] ⇒

∧
y∈X [erX(y, x) ⇒ B(y)]

]
≥

∧
x∈X

∧
y∈X [A(y) ⇒ B(y)] (by Lemma 2.2(10))

= erLX (A,B).

Hence ⇓r is an r-interior operator.
We show that Ir1 is an r-interior operator.

(I1) Let A ∈ LX . Then

Ir1 (A)(x) =
∨

y∈X

[
erX(x, y)⊙

∧
z∈X [erX(z, y) ⇒ A(z)]

]
≤

∨
y∈X [erX(x, y)⊙ [erX(x, y) ⇒ A(x)]]

≤ A(x) (by Lemma 2.2(5)).

(I2) Let A ∈ LX .
Claim 1:

∧
z∈X [erX(z, y) ⇒ A(z)] =

∧
z∈X [erX(z, y) ⇒ Ir1 (A)(z)].

Since Ir1 (A)(z) ≤ A(z) by (I1), we have by Lemma 2.2(1) that∧
z∈X

[erX(z, y) ⇒ Ir1 (A)(z)] ≤
∧
z∈X

[erX(z, y) ⇒ A(z)] .

On the other hand, note that∧
w∈X [erX(w, y) ⇒ Ir1 (A)(w)]

=
∧

w∈X

[
erX(w, y) ⇒

∨
p∈X

[
erX(w, p)⊙

∧
z∈X [erX(z, p) ⇒ A(z)]

]]
≥

∧
w∈X

[
erX(w, y) ⇒

[
erX(w, y)⊙

∧
z∈X [erX(z, y) ⇒ A(z)]

]]
≥

∧
w∈X

∧
z∈X [erX(z, y) ⇒ A(z)] (by residuation)

=
∧

z∈X [erX(z, y) ⇒ A(z)] .

Hence Claim 1 is proved.
Finally, we have

Ir1 (I
r
1 (A))(x) =

∨
y∈X

[
erX(x, y)⊙

∧
z∈X [erX(z, y) ⇒ Ir1 (A)(z)]

]
=

∨
y∈X

[
erX(x, y)⊙

∧
z∈X [erX(z, y) ⇒ A(z)]

]
(by Claim 1)

= Ir1 (A)(x).

Hence Ir1 (I
r
1 (A)) = Ir1 (A) for all A ∈ LX .
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(IR) Let A,B ∈ LX . By Lemma 2.2(8) and (10), we have

erLX (Ir1 (A), Ir1 (B)) =
∧

x∈X [Ir1 (A)(x) ⇒ Ir1 (B)(x)]

=
∧

x∈X

[∨
y∈X

[
erX(x, y)⊙

∧
z∈X [erX(z, y) ⇒ A(z)]

]
⇒

∨
y∈X

[
erX(x, y)⊙

∧
z∈X [erX(z, y) ⇒ B(z)]

]]
≥

∧
x∈X

∧
y∈X

[[
erX(x, y)⊙

∧
z∈X [erX(z, y) ⇒ A(z)]

]
⇒

[
erX(x, y)⊙

∧
z∈X [erX(z, y) ⇒ B(z)]

]]
≥

∧
x∈X

∧
y∈X

[∧
z∈X [erX(z, y) ⇒ A(z)] ⇒

∧
z∈X [erX(z, y) ⇒ B(z)]

]
≥

∧
x∈X

∧
y∈X

∧
z∈X [[erX(z, y) ⇒ A(z)] ⇒ [erX(z, y) ⇒ B(z)]]

≥
∧

x∈X

∧
y∈X

∧
z∈X [A(z) ⇒ B(z)]

= erLX (A,B).

Hence Ir1 is an r-interior operator.
We show Ir1 ≤⇓r. Let A ∈ LX . Since

erX(w, x)⊙ erX(x, y)⊙
∧

z∈X [erX(z, y) ⇒ A(z)]
≤ erX(w, x)⊙ erX(x, y)⊙ [erX(w, y) ⇒ A(w)]
≤ erX(w, y)⊙ [erX(w, y) ⇒ A(w)] (by (R))
≤ A(w) (by Lemma 2.2(5)),

we have by residuation that

erX(x, y)⊙
∧
z∈X

[erX(z, y) ⇒ A(z)] ≤ erX(w, x) ⇒ A(w) for all y, w ∈ X,

which implies that

∨
y∈X

[
erX(x, y)⊙

∧
z∈X

[erX(z, y) ⇒ A(z)]

]
≤

∧
w∈X

[erX(w, x) ⇒ A(w)] .

Hence Ir1 (A) ≤⇓r A for all A ∈ LX .
(4) We show that ⇑r is an l-interior operator.
(I1) Let A ∈ LX . Then

⇑r A(x) =
∧

y∈X [erX(x, y) → A(y)] ≤ erX(x, x) → A(x) = A(x).

(I2) Let A ∈ LX . Then

⇑r (⇑r A)(x) =
∧

y∈X [erX(x, y) →⇑r A(y)]

=
∧

y∈X

[
erX(x, y) →

∧
z∈X [erX(y, z) → A(z)]

]
=

∧
y∈X

∧
z∈X [erX(x, y) → [erX(y, z) → A(z)]] (by Lemma 2.2(2))

=
∧

y∈X

∧
z∈X [[erX(x, y)⊙ erX(y, z)] → A(z)] (by Lemma 2.2(3))

=
∧

z∈X

[∨
y∈X [erX(x, y)⊙ erX(y, z)] → A(z)

]
(by Lemma 2.2(2))

=
∧

z∈X [erX(x, z) → A(z)]
=⇑r A(x).
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(IL) Let A,B ∈ LX . Then

elLX (⇑r A,⇑r B) =
∧

x∈X [⇑r A(x) →⇑r B(x)]

=
∧

x∈X

[∧
y∈X [erX(x, y) → A(y)] →

∧
y∈X [erX(x, y) → B(y)]

]
≥

∧
x∈X

∧
y∈X

[
[erX(x, y) → A(y)] →

∧
y∈X [erX(x, y) → B(y)]

]
≥

∧
x∈X

∧
y∈X [A(y) → B(y)] (by Lemma 2.2(10))

= elLX (A,B).

Hence ⇑r is an l-interior operator.
We show that I l2 is an l-interior operator.

(I1) Let A ∈ LX . Then

I l2(A)(x) =
∨

y∈X

[∧
z∈X [erX(y, z) → A(z)]⊙ erX(y, x)

]
≤

∨
y∈X [[erX(y, x) → A(x)]⊙ erX(y, x)]

≤ A(x) (by Lemma 2.2(5)).

(I2) Let A ∈ LX .
Claim 4:

∧
z∈X [erX(y, z) → A(z)] =

∧
z∈X

[
erX(y, z) → I l2(A)(z)

]
.

Since I l2(A)(z) ≤ A(z) by (I1), we have by Lemma 2.2(1) that

∧
z∈X

[
erX(y, z) → I l2(A)(z)

]
≤

∧
z∈X

[erX(y, z) → A(z)] .

On the other hand, note that

∧
w∈X

[
erX(y, w) → I l2(A)(w)

]
=

∧
w∈X

[
erX(y, w) →

∨
p∈X

[∧
z∈X [erX(p, z) → A(z)]⊙ erX(p, w)

]]
≥

∧
w∈X

[
erX(y, w) →

[∧
z∈X [erX(y, z) → A(z)]⊙ erX(y, w)

]]
≥

∧
w∈X

∧
z∈X [erX(y, z) → A(z)] (by residuation)

=
∧

z∈X [erX(y, z) → A(z)] .

Hence Claim 4 is proved.
Finally, we have

I l2(I
l
2(A))(x) =

∨
y∈X

[∧
z∈X

[
erX(y, z) → I l2(A)(z)

]
⊙ erX(y, x)

]
=

∨
y∈X

[∧
z∈X [erX(y, z) → A(z)]⊙ erX(y, x)

]
(by Claim 4)

= I l2(A)(x).

Hence I l2(I
l
2(A)) = I l2(A) for all A ∈ LX .



1010 Ju-Mok Oh

(IR) Let A,B ∈ LX . By Lemma 2.2(8) and (10), we have

elLX

(
I l2(A), I l2(B)

)
=

∧
x∈X

[
I l2(A)(x) → I l2(B)(x)

]
=

∧
x∈X

[∨
y∈X

[∧
z∈X [erX(y, z) → A(z)]⊙ erX(y, x)

]
→

∨
y∈X

[∧
z∈X [erX(y, z) → B(z)]⊙ erX(y, x)

]]
≥

∧
x∈X

∧
y∈X

[[∧
z∈X [erX(y, z) → A(z)]⊙ erX(y, x)

]
→

[∧
z∈X [erX(y, z) → B(z)]⊙ erX(y, x)

]]
≥

∧
x∈X

∧
y∈X

[∧
z∈X [erX(y, z) → A(z)] →

∧
z∈X [erX(y, z) → B(z)]

]
≥

∧
x∈X

∧
y∈X

∧
z∈X [[erX(y, z) → A(z)] → [erX(y, z) → B(z)]]

≥
∧

x∈X

∧
y∈X

∧
z∈X [A(z) → B(z)] (by Lemma 2.2(10))

= elLX (A,B).

Hence I l2 is an l-interior operator.
We show I l2 ≤⇑r. Let A ∈ LX . Since∧

z∈X [erX(y, z) → A(z)]⊙ erX(y, x)⊙ erX(x,w)
≤

∧
z∈X [erX(y, z) → A(z)]⊙ erX(y, w) (by (R))

≤ [erX(y, w) → A(w)]⊙ erX(y, w)
≤ A(w) (by Lemma 2.2(5)),

we have by residuation that∧
z∈X

[erX(y, z) → A(z)]⊙ erX(y, x) ≤ erX(x,w) → A(w) for all y, w ∈ X,

which implies that∨
y∈X

[ ∧
z∈X

[erX(y, z) → A(z)]⊙ erX(y, x)

]
≤

∧
w∈X

[erX(x,w) → A(w)] .

Hence I l2(A) ≤⇑r A for all A ∈ LX .
(2) and (3) can be similarly proved. □

4. Various completeness

In this section, we demonstrate that the set M =
{
A ∈ LX | I(A) = A

}
,

where I is a right (resp. left) interior operator, is a right (resp. left) join
complete.

Definition 4.1. [5] Let (X, erX) be an r-partially ordered set. Let A ∈ LX .
(1) A point x0 is called an r-join (or right-join) of A, denoted by x0 = ⊔rA, if
it satisfies
(RJ1) A(x) ≤ erX (x, x0) for all x ∈ X,
(RJ2)

∧
x∈X [A(x) ⇒ erX(x, y)] ≤ erX (x0, y) for all y ∈ X.

(2) A point x1 is called an r-meet (or right-meet) of A, denoted by x1 = ⊓rA, if
it satisfies
(RM1) A(x) ≤ erX (x1, x) for all x ∈ X,
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(RM2)
∧

x∈X [A(x) → erX(y, x)] ≤ erX (y, x1) for all y ∈ X.

Let
(
X, elX

)
be an l-partially ordered set. Let A ∈ LX .

(3) A point x0 is called an l-join (or left-join) of A, denoted by x0 = ⊔lA, if it
satisfies
(LJ1) A(x) ≤ elX (x, x0) for all x ∈ X,
(LJ2)

∧
x∈X

[
A(x) → elX(x, y)

]
≤ elX (x0, y) for all y ∈ X.

(4) A point x1 is called an l-meet (or left-meet) of A, denoted by x1 = ⊓lA, if it
satisfies
(LM1) A(x) ≤ elX (x1, x) for all x ∈ X,
(LM2)

∧
x∈X

[
A(x) ⇒ elX(y, x)

]
≤ elX (y, x1) for all y ∈ X.

(5) An r-partially ordered set (X, erX) is r-join complete (resp. r-meet complete)
if there exists ⊔rA (resp. ⊓rA) for all A ∈ LX .
(6) An r-partially ordered set (X, erX) is r-complete if is r-join complete and
r-meet complete.
(7) An l-partially ordered set

(
X, elX

)
is l-join complete( resp. l-meet complete)

if there exists ⊔lA (resp. ⊓lA) for all A ∈ LX .
(8) An l-partially ordered set

(
X, elX

)
is l-complete if it is l-join complete and

l-meet complete.

Lemma 4.2. [5] Let
(
X, erX , elX

)
be a bi-partially ordered set. Let x0, x1 ∈ X.

Let A ∈ LX . Then the following hold.
(1) x0 = ⊔rA if and only if

∧
x∈X [A(x) ⇒ erX(x, y)] = erX (x0, y) for all y ∈ X.

(2) x1 = ⊓rA if and only if
∧

x∈X [A(x) → erX(y, x)] = erX (y, x1) for all y ∈ X.

(3) x0 = ⊔lA if and only if
∧

x∈X

[
A(x) → elX(x, y)

]
= elX (x0, y) for all y ∈ X.

(4) x1 = ⊓lA if and only if
∧

x∈X

[
A(x) ⇒ elX(y, x)

]
= elX (y, x1) for all y ∈ X.

(5) ⊔rA, ⊓rA, ⊔lA and ⊓lA are unique if each exists.

Theorem 4.3. (1) Let Ir : LX → LX be an r-interior operator. Let Hr
Ir =

{A ∈ LX | Ir(A) = A}. Then
(
Hr

Ir , erHr
Ir

)
is r-join complete where

⊔rΨ =
∨

A∈Hr
Ir

[A⊙Ψ(A)] for all Ψ ∈ LLX

.

(2) Let I l : LX → LX be an l-interior operator. Let H l
Il = {A ∈ LX | I l(A) =

A}. Then

(
H l

Il , e
l
Hl

Il

)
is l-join complete where

⊔lΨ =
∨

A∈Hl

Il

[Ψ(A)⊙A] for all Ψ ∈ LLX

.



1012 Ju-Mok Oh

Proof. (1) Let Ψ : Hr
Ir → L be a map. Note that for all B ∈ LX ,∧

A∈Hr
Ir

[
Ψ(A) ⇒ erA∈Hr

Ir
(A,B)

]
=

∧
A∈Hr

Ir

[
Ψ(A) ⇒

∧
x∈X [A(x) ⇒ B(x)]

]
=

∧
A∈Hr

Ir

∧
x∈X [Ψ(A) ⇒ [A(x) ⇒ B(x)]] (by Lemma 2.2(2))

=
∧

A∈Hr
Ir

∧
x∈X [[A(x)⊙Ψ(A)] ⇒ B(x)] (by Lemma 2.2(3))

=
∧

x∈X

[∨
A∈Hr

Ir
[A(x)⊙Ψ(A)] ⇒ B(x)

]
(by Lemma 2.2(2))

= erA∈Hr
Ir

(∨
A∈Hr

Ir
[A⊙ Φ(A)] , B

)
.

By Lemma 4.2, ⊔rΨ =
∨

A∈Hr
Ir

[A⊙ Φ(A)].

(2) Let Ψ : H l
Il → L be a map. Note that for all B ∈ H l

Il ,∧
A∈Hl

Il

[
Ψ(A) → el

Hl

Il

(A,B)

]
=

∧
A∈Hl

Il

[
Ψ(A) →

∧
x∈X [A(x) → B(x)]

]
=

∧
A∈Hl

Il

∧
x∈X [Ψ(A) → [A(x) → B(x)]] (by Lemma 2.2(2))

=
∧

A∈Hl

Il

∧
x∈X [[Ψ(A)⊙A(x)] → B(x)] (by Lemma 2.2(3))

=
∧

x∈X

[∨
A∈Hl

Il
[Ψ(A)⊙A(x)] → B(x)

]
(by Lemma 2.2(2))

= el
Hl

Il

(∨
A∈Hl

Il
[Φ(A)⊙A] , B

)
.

By Lemma 4.2, ⊔lΨ =
∨

A∈Hl

Il
[Φ(A)⊙A].

□

By Theorems 3.10 and 4.3, we have the following.

Corollary 4.4. (1) The pair
(
Hr

Ir , erHr
Ir

)
is r-join complete where Ir =⇓r or

⇑l.

(2) The pair

(
H l

Il , e
l
Hl

Il

)
is l-join complete where I l =⇓l or ⇑r.

Lemma 4.5. (1) Let {ki}i∈Γ ⊆ L and {Ai}i∈Γ ⊆ Hr
Ir where Ir =⇓r or ⇑l.

Then
∧

i∈Γ [ki → Ai] ∈ Hr
Ir .

(2) Let {ki}i∈Γ ⊆ L and {Ai}i∈Γ ⊆ H l
Il where I

l =⇓l or ⇑r. Then
∧

i∈Γ [ki ⇒ Ai] ∈
H l

Il .

Proof. (1) Case 1: Ir =⇓r. Note that

⇓r

(∧
i∈Γ [ki → Ai]

)
(x) =

∧
y∈X

[
erX(y, x) ⇒

∧
i∈Γ [ki → Ai] (y)

]
=

∧
y∈X

∧
i∈Γ [e

r
X(y, x) ⇒ [ki → Ai(y)]] (by Lemma 2.2(2))

=
∧

y∈X

∧
i∈Γ [ki → [erX(y, x) ⇒ Ai(y)]] (by Lemma 2.2(4))

=
∧

i∈Γ

[
ki →

∧
y∈X [erX(y, x) ⇒ Ai(y)]

]
(by Lemma 2.2(2))

=
∧

i∈Γ [ki →⇓r Ai(x)]
=

∧
i∈Γ [ki → Ai(x)] (∵ Ai ∈ Hr

Ir )
=

(∧
i∈Γ [ki → Ai]

)
(x).

Hence
∧

i∈Γ [ki → Ai] ∈ Hr
⇓r
.
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Case 2: Ir =⇑l. Note that

⇑l

(∧
i∈Γ [ki → Ai]

)
(x) =

∧
y∈X

[
elX(x, y) ⇒

∧
i∈Γ [ki → Ai] (y)

]
=

∧
y∈X

∧
i∈Γ

[
elX(x, y) ⇒ [ki → Ai(y)]

]
(by Lemma 2.2(2))

=
∧

y∈X

∧
i∈Γ

[
ki →

[
elX(x, y) ⇒ Ai(y)

]]
(by Lemma 2.2(4))

=
∧

i∈Γ

[
ki →

∧
y∈X

[
elX(x, y) ⇒ Ai(y)

]]
(by Lemma 2.2(2))

=
∧

i∈Γ [ki →⇑l Ai(x)]
=

∧
i∈Γ [ki → Ai(x)] (∵ Ai ∈ Hr

Ir )
=

(∧
i∈Γ [ki → Ai]

)
(x).

Hence
∧

i∈Γ [ki → Ai] ∈ Hr
⇑l
.

(2) Case 1: I l =⇓l. Note that

⇓l

(∧
i∈Γ [ki ⇒ Ai]

)
(x) =

∧
y∈X

[
elX(y, x) →

∧
i∈Γ [ki ⇒ Ai] (y)

]
=

∧
y∈X

∧
i∈Γ

[
elX(y, x) → [ki ⇒ Ai(y)]

]
(by Lemma 2.2(2))

=
∧

y∈X

∧
i∈Γ

[
ki ⇒

[
elX(y, x) → Ai(y)

]]
(by Lemma 2.2(4))

=
∧

i∈Γ

[
ki ⇒

∧
y∈X

[
elX(y, x) → Ai(y)

]]
(by Lemma 2.2(2))

=
∧

i∈Γ [ki ⇒⇓l Ai(x)]
=

∧
i∈Γ [ki ⇒ Ai(x)] (∵ Ai ∈ H l

Il)
=

(∧
i∈Γ [ki ⇒ Ai]

)
(x).

Hence
∧

i∈Γ [ki ⇒ Ai] ∈ H l
⇓l
.

Case 2: I l =⇑r. Note that

⇑r

(∧
i∈Γ [ki ⇒ Ai]

)
(x) =

∧
y∈X

[
erX(x, y) →

∧
i∈Γ [ki ⇒ Ai] (y)

]
=

∧
y∈X

∧
i∈Γ [e

r
X(x, y) → [ki ⇒ Ai(y)]] (by Lemma 2.2(2))

=
∧

y∈X

∧
i∈Γ [ki ⇒ [erX(x, y) → Ai(y)]] (by Lemma 2.2(4))

=
∧

i∈Γ

[
ki ⇒

∧
y∈X [erX(x, y) → Ai(y)]

]
(by Lemma 2.2(2))

=
∧

i∈Γ [ki ⇒⇑r Ai(x)]
=

∧
i∈Γ [ki ⇒ Ai(x)] (∵ Ai ∈ H l

Il)
=

(∧
i∈Γ [ki ⇒ Ai]

)
(x).

Hence
∧

i∈Γ [ki ⇒ Ai] ∈ H l
⇑r
. □

Theorem 4.6. (1) The pair
(
Hr

Ir , erHr
Ir

)
is r-complete where Ir =⇓r or ⇑l.

(2) The pair

(
H l

Il , e
l
Hl

Il

)
is l-complete where I l =⇓l or ⇑r.

Proof. (1) By Theorems 3.10 and 4.3,
(
Hr

Ir , erHr
Ir

)
is r-join complete. It is

enough to show that
(
Hr

Ir , erHr
Ir

)
is r-meet complete.

Let Ψ : Hr
Ir → L be a map. Note that for all B ∈ Hr

Ir ,
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∧
A∈Hr

Ir

[
Ψ(A) → erHr

Ir
(B,A)

]
=

∧
A∈Hr

Ir

[
Ψ(A) →

∧
x∈X [B(x) ⇒ A(x)]

]
=

∧
A∈Hr

Ir

∧
x∈X [Ψ(A) → [B(x) ⇒ A(x)]] (by Lemma 2.2(2))

=
∧

A∈Hr
Ir

∧
x∈X [B(x) ⇒ [Ψ(A) → A(x)]] (by Lemma 2.2(4))

=
∧

x∈X

[
B(x) ⇒

∧
A∈Hr

Ir
[Ψ(A) → A(x)]

]
(by Lemma 2.2(2))

= erHr
Ir

(
B,

∧
A∈Hr

Ir
[Ψ(A) → A]

)
.

By Lemmas 4.2 and 4.5, ⊓rΨ =
∧

A∈Hr
Ir

[Φ(A) → A]. Hence
(
Hr

Ir , erHr
Ir

)
is

r-meet complete.

(2) By Theorems 3.10 and 4.3,

(
H l

Il , e
l
Hl

Il

)
is l-join complete. It is enough to

show that

(
H l

Il , e
l
Hl

Il

)
is l-meet complete.

Let Ψ : H l
Il → L be a map. For all B ∈ H l

Il ,∧
A∈Hl

Il

[
Ψ(A) ⇒ el

Hl

Il

(B,A)

]
=

∧
A∈Hl

Il

[
Ψ(A) ⇒

∧
x∈X [B(x) → A(x)]

]
=

∧
A∈Hl

Il

∧
x∈X [Ψ(A) ⇒ [B(x) → A(x)]] (by Lemma 2.2(2))

=
∧

A∈Hl

Il

∧
x∈X [B(x) → [Ψ(A) ⇒ A(x)]] (by Lemma 2.2(4))

=
∧

x∈X

[
B(x) →

∧
A∈Hl

Il
[Ψ(A) ⇒ A(x)]

]
(by Lemma 2.2(2))

= el
Hl

Il

(
B,

∧
A∈Hl

Il
[Ψ(A) ⇒ A]

)
.

By Lemmas 4.2 and 4.5, ⊓lΨ =
∧

A∈Hl

Il
[Ψ(A) ⇒ A]. Hence

(
H l

Il , e
l
Hl

Il

)
is

l-meet complete. □
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