DOI QR코드

DOI QR Code

Molecular methods for diagnosis of microbial pathogens in muga silkworm, Antheraea assamensis Helfer (Lepidoptera: Saturniidae)

  • Gangavarapu Subrahmanyam (Seri-biotech Research Laboratory, Central Silk Board, Ministry of Textiles: Govt. of India) ;
  • Kangayam M. Ponnuvel (Seri-biotech Research Laboratory, Central Silk Board, Ministry of Textiles: Govt. of India) ;
  • Kallare P Arunkumar (Silkworm Division, Central Muga Eri Research and Training Institute (CMER&TI), Central Silk Board, Ministry of Textiles: Govt. of India) ;
  • Kamidi Rahul (Central Sericultural Research & Training Institute, Central Silk Board, Ministry of Textiles: Govt. of India) ;
  • S. Manthira Moorthy (National Silkworm Seed Organization (NSSO), Central Silk Board, Ministry of Textiles: Govt. of India) ;
  • Vankadara Sivaprasad (Seri-biotech Research Laboratory, Central Silk Board, Ministry of Textiles: Govt. of India)
  • 투고 : 2023.06.16
  • 심사 : 2023.07.24
  • 발행 : 2023.09.30

초록

The Indian golden muga silkworm, Antheraea assamensis Helfer is an economically important wild silkworm endemic to Northeastern part of India. In recent years, climate change has posed a threat to muga silk production due to the requirement that larvae be reared outdoors. Since the muga silkworm larvae are exposed to the vagaries of nature, the changing climate has increased the incidence of microbial diseases in the rearing fields. Accurate diagnosis of the disease causing pathogens and its associated epidemiology are prerequisites to manage the diseases in the rearing field. Although conventional microbial culturing methods are widely used to identify pathogenic bacteria, they would not provide meaningful information on a wide variety of silkworm pathogens. The information on use of molecular diagnostic tools in detection of microbial pathogens of wild silk moths is very limited. A wide range of molecular and immunodiagnostic techniques including denaturing gradient gel electrophoresis (DGGE), random amplified polymorphism (RAPD), 16S rRNA/ITSA gene sequencing, multiplex polymerase chain reaction (M-PCR), fluorescence in situ hybridization (FISH), immunofluorescence, and repetitive-element PCR (Rep-PCR), have been used for detecting and characterizing the pathogens of insects with economic significance. Nevertheless, the application of these molecular tools for detecting and typing entomopathogens in surveillance studies of muga silkworm rearing is very limited. Here, we discuss the possible application of these molecular techniques, their advantages and major limitations. These methods show promise in better management of diseases in muga ecosystem.

키워드

과제정보

The authors are thankful to Central Silk Board, Ministry of Textiles, Govt. of India for the financial support in projects ARP5878 and ARP08007MI.

참고문헌

  1. Abdollahzadeh J, Zolfaghari S (2014) Efficiency of rep-PCR fingerprinting as a useful technique for molecular typing of plant pathogenic fungal species: Botryosphaeriaceae species as a case study. FEMS Microbiol Lett 361, 144-157.  https://doi.org/10.1111/1574-6968.12624
  2. Aharon Y, Pasternak Z, Ben Yosef M, Behar A, Lauzon C, Yuval B, et al. (2013) Phylogenetic, metabolic, and taxonomic diversities shape Mediterranean fruit fly microbiotas during ontogeny. Appl Environ Microbiol 79, 303-313.  https://doi.org/10.1128/AEM.02761-12
  3. Badotti F, de Oliveira FS, Garcia CF, Vaz ABM, Fonseca PLC, Nahum LA, et al. (2017) Effectiveness of ITS and sub-regions as DNA barcode markers for the identification of Basidiomycota (Fungi). BMC Microbiol 17, 1-12.  https://doi.org/10.1186/s12866-017-0958-x
  4. Banos S, Lentendu G, Kopf A, Wubet T, Glockner FO, Reich M (2018) A comprehensive fungi-specific 18S rRNA gene sequence primer toolkit suited for diverse research issues and sequencing platforms. BMC Microbiol 18, 1-15.  https://doi.org/10.1186/s12866-018-1331-4
  5. Barghouthi SA (2011) A universal method for the identification of bacteria based on general PCR primers. Indian J Microbiol 51, 430-444.  https://doi.org/10.1007/s12088-011-0122-5
  6. Bojko J, Reinke AW, Stentiford GD, Williams B, Rogers MS, Bass D (2022) Microsporidia: a new taxonomic, evolutionary, and ecological synthesis. Trends in Parasitol 38, 642-659.  https://doi.org/10.1016/j.pt.2022.05.007
  7. Ceballos-Escalera A, Richards J, Arias MB, Inward DJ, Vogler AP (2022) Metabarcoding of insect-associated fungal communities: a comparison of internal transcribed spacer (ITS) and large-subunit (LSU) rRNA markers. MycoKeys 88, 1. 
  8. Chakravorty R, Das R, Neog K, Das K, Sahu M (2007) A diagnostic manual for diseases and pest of muga silkworm and their host plants. pp. 1-47. Published by CMER&TI, Central Silk Board, Lahdoigarh, Jorhat, Assam. 
  9. Chen B, Teh BS, Sun C, Hu S, Lu X, Boland W, et al. (2016) Biodiversity and activity of the gut microbiota across the life history of the insect herbivore Spodoptera littoralis. Sci Rep 6, 29505. 
  10. Chen B, Du K, Sun C, Vimalanathan A, Liang X, Li Y, et al. (2018a) Gut bacterial and fungal communities of the domesticated silkworm (Bombyx mori) and wild mulberry-feeding relatives. ISME J 12, 2252-2262.  https://doi.org/10.1038/s41396-018-0174-1
  11. Chen B, Yu T, Xie S, Du K, Liang X, Lan Y, et al. (2018b) Comparative shotgun metagenomic data of the silkworm Bombyx mori gut microbiome. Sci data 5, 1-10.  https://doi.org/10.1038/sdata.2018.285
  12. Chen B, Zhang N, Xie S, Zhang X, He J, Muhammad A, et al. (2020) Gut bacteria of the silkworm Bombyx mori facilitate host resistance against the toxic effects of organophosphate insecticides. Environ Int 143, 105886. 
  13. Chen J, Guo W, Dang X, Huang Y, Liu F, Meng X, et al. (2017) Easy labeling of proliferative phase and sporogonic phase of microsporidia Nosema bombycis in host cells. PloS one 12, e0179618. 
  14. Choudhury A, Guha A, Yadav A, Unni BG, Roy MK (2002) Causal organism of flacherie in the silkworm Antheraea assama Ww: isolation, characterization and its inhibition by garlic extract. Phytother Res 16, 89-90.  https://doi.org/10.1002/ptr.810
  15. Chung CY, Cook CE, Lin GW, Huang TY, Chang CC (2014) Reliable protocols for whole -mount fluorescent in situ hybridization (FISH) in the pea aphid Acyrthosiphon pisum: A comprehensive survey and analysis. Insect Sci 21, 265-277.  https://doi.org/10.1111/1744-7917.12086
  16. Das R, Das K, Giridhar K (2014) Constrains in management for conservation of muga silkworm (Antherea assamensis Helfer). Mun Ent Zool 9, 879-883. 
  17. Dee Tan IY, Bautista MAM (2022) Bacterial survey in the guts of domestic silkworms, Bombyx mori L. Insects 13, 100. 
  18. Dematheis F, Kurtz B, Vidal S, Smalla K (2012) Microbial communities associated with the larval gut and eggs of the Western Corn Rootworm. PLoS ONE 7, e44685. 
  19. Dong Z, Zheng N, Hu C, Deng B, Fang W, Wu Q, et al. (2021) Nosema bombycis microRNA-like RNA 8 (Nb-milR8) increases fungal pathogenicity by modulating BmPEX16 gene expression in its host, Bombyx mori. Microbiol Spectr 9, e0104821. 
  20. Gielen R, Robledo G, Zapata AI, Tammaru T, Poldmaa K (2022) Entomopathogenic fungi infecting lepidopteran larvae: A case from central Argentina. Life 12, 974. 
  21. Gurtler V, Subrahmanyam G (2021) Methods in Microbiology (First Edition). Academic Press, Amsterdam.
  22. Haloi K, Kalita MK, Nath R, Devi D (2016) Characterization and pathogenicity assessment of gut-associated microbes of muga silkworm Antheraea assamensis Helfer (Lepidoptera: Saturniidae). J Invertebr Pathol 138, 73-85.  https://doi.org/10.1016/j.jip.2016.06.006
  23. He C, Nan X, Zhang Z, Li M (2013) Composition and diversity analysis of the gut bacterial community of the Oriental armyworm, Mythimna separata, determined by culture-independent and culture-dependent techniques. J Insect Sci 13, 165. 
  24. Kalle E, Kubista M, Rensing C (2014) Multi-template polymerase chain reaction. Biomol Detect Quantif 2, 11-29.  https://doi.org/10.1016/j.bdq.2014.11.002
  25. Kliot A, Kontsedalov S, Lebedev G, Brumin M, Cathrin PB, Marubayashi JM et al. (2014) Fluorescence in situ hybridizations (FISH) for the localization of viruses and endosymbiotic bacteria in plant and insect tissues. JoVE-J Vis Exp 84, e51030. 
  26. Kliot A, Ghanim M (2016) Fluorescent in situ hybridization for the localization of viruses, bacteria and other microorganisms in insect and plant tissues. Methods 98, 74-81.  https://doi.org/10.1016/j.ymeth.2015.12.003
  27. Kwak KW, Nam SH, Choi JY, Lee S, Kim HG, Kim SH, et al. (2015) Simultaneous detection of fungal, bacterial, and viral pathogens in insects by multiplex PCR and capillary electrophoresis. Int J Indust Entomol 30, 64-74.  https://doi.org/10.7852/ijie.2015.30.2.64
  28. Li GN, Xia XJ, Zhao HH, Sendegeya P, Zhu Y (2015) Identification and characterization of Bacillus cereus SW7-1 in Bombyx mori (Lepidoptera: Bombycidae). J Insect Sci 15, 136. 
  29. Li Y, Wu Z, Pan G, He W, Zhang R, Hu J et al. (2009) Identification of a novel spore wall protein (SWP26) from microsporidia Nosema bombycis. Int J Parasitol 39, 391-398.  https://doi.org/10.1016/j.ijpara.2008.08.011
  30. Lisek A, Paszt LS, Trzcinski P, Kulisiewicz A, Malusa E (2011) Use of the rep-PCR technique for differentiating isolates of rhizobacteria. J Fruit Ornam Plant Res 19, 5-12. 
  31. Lv Q, Wang L, Fan Y, Meng X, Liu K, Zhou B, et al. (2020) Identification and characterization a novel polar tube protein (NbPTP6) from the microsporidian Nosema bombycis. Parasit Vectors 13, 1-9.  https://doi.org/10.1186/s13071-020-04348-z
  32. Mohanta MK, Saha AK, Saleh DKMA, Islam MS, Mannan KSB, Fakruddin M (2015) Characterization of Klebsiella granulomatis pathogenic to silkworm, Bombyx mori L. 3 Biotech 5, 577-583.  https://doi.org/10.1007/s13205-014-0255-4
  33. Mongkolsamrit S, Khonsanit A, Thanakitpipattana D, Tasanathai K, Noisripoom W, Lamlertthon S, et al. (2020) Revisiting Metarhizium and the description of new species from Thailand. Stud Mycol 95, 171-251.  https://doi.org/10.1016/j.simyco.2020.04.001
  34. Muyzer G (1999) DGGE/TGGE a method for identifying genes from natural ecosystems. Curr Opin Microbiol 2, 317-322.  https://doi.org/10.1016/S1369-5274(99)80055-1
  35. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, et al. (2000) Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28, e63. 
  36. Panigrahi S, Velraj P, Rao TS (2019) Functional microbial diversity in contaminated environment and application in bioremediation; in Microbial diversity in the genomic era. Das S, Dash HR (eds.), pp. 359-385, Academic press. 
  37. Parida M, Sannarangaiah S, Dash PK, Rao PVL, Morita K (2008) Loop mediated isothermal amplification (LAMP): a new generation of innovative gene amplification technique; perspectives in clinical diagnosis of infectious diseases. Rev Med Virol 18, 407-421.  https://doi.org/10.1002/rmv.593
  38. Ptaszynska AA, Borsuk G, Wozniakowski G, Gnat S, Malek W (2014) Loop-mediated isothermal amplification (LAMP) assays for rapid detection and differentiation of Nosema apis and N. ceranae in honeybees. FEMS Microbiol Lett 357, 40-48.  https://doi.org/10.1111/1574-6968.12521
  39. Rademaker JLW, Louws FJ, Versalovic JV, De Bruijn FJ (2008) Characterization of the diversity of ecologically important microbes by rep-PCR genomic fingerprinting; in Molecular Microbial Ecology Manual. Kowalchuck GA, De Bruijn FJ, Head IM, Akkermans ADL, Van Elsas JD (eds.), pp. 611- 644, Springer, The Netherlands. 
  40. Rahul K, Moamongba, Saikia K, Rabha M, Sivaprasad V (2019) Identification and characterization of bacteria causing flacherie in mulberry silkworm, Bombyx mori L. J crop weed 15, 178-181.  https://doi.org/10.22271/09746315.2019.v15.i3.1257
  41. Raja HA, Miller AN, Pearce CJ, Oberlies NH (2017) Fungal identification using molecular tools: A primer for the natural products research community. J Nat Prod 80, 756-770.  https://doi.org/10.1021/acs.jnatprod.6b01085
  42. Raja HA, Oberlies NH, Stadler M (2021) Occasional comment: Fungal identification to species-level can be challenging. Phytochemistry 190, 112855. 
  43. Rampadarath S, Puchooa D, Bal S (2015) Repetitive element palindromic PCR (rep-PCR) as a genetic tool to study interspecific diversity in Euphorbiaceae family. Elect J Biotechnol 18, 412-417.  https://doi.org/10.1016/j.ejbt.2015.09.003
  44. Ravikumar G, Urs SR, Prakash NV, Rao CGP, Vardhana KV (2011) Development of a multiplex polymerase chain reaction for the simultaneous detection of microsporidians, nucleopolyhedrovirus, and densovirus infecting silkworms. J Invertebr Pathol 107, 193-197.  https://doi.org/10.1016/j.jip.2011.04.009
  45. Sangannavar PA, Kumar JS, Subrahmanyam G, Kutala S (2021) Genomics and omics tools to assess complex microbial communities in silkworms: A paradigm shift towards translational research; in Methods in Microbiology. Gurtler V, Subrahmanyam G (eds.), pp. 143-174, Academic Press. 
  46. Sharma J, Yadav A, Unni BG, Kalita MC (2005) Antibacterial proteins from non-mulberry silkworms against flacherie causing Pseudomonas aeruginosa AC-3. Curren Sci 89, 1613-1618. 
  47. Shi W, Syrenne R, Sun JZ, Yuan JS (2010) Molecular approaches to study the insect gut symbiotic microbiota at the 'omics' age. Insect Sci 17, 199-219.  https://doi.org/10.1111/j.1744-7917.2010.01340.x
  48. Singh NI, Goswami D, Mustaque A, Giridhar K (2014) Efficacy of sodium hypochlorite in controlling viral and bacterial diseases in muga silkworm, Antheraea assamensis Helfer. J App Biol Biotechnol 2, 12-15. 
  49. Sivaprasad V, Satish L, Mallikarjuna G, Chandrakanth N, Mary Josepha AV, Moorthy SM (2021a) A field-friendly loop-mediated isothermal amplification (FF-LAMP) method for rapid detection of Nosema bombycis in silkworm, Bombyx mori. Invertebr Surviv J 18, 66-74. 
  50. Sivaprasad V, Rahul K, Makwana P (2021b) Immunodiagnosis of silkworm diseases; in Methods in Microbiology. Gurtler V, Subrahmanyam G (eds.), pp. 27-46, Academic Press. 
  51. Song F, Chang P, Zhang P, Yi F, Ma Y, Lu C, et al. (2008) Chromosomal localization of silkworm (Bombyx mori) sericin gene 1 and chymotrypsin inhibitor 13 using fluorescence in situ hybridization. Sci China C Life Sci 51, 133-139.  https://doi.org/10.1007/s11427-008-0025-9
  52. Subrahmanyam G, Vaghela R, Bhatt NP, Archana G (2012) Carbonate-dissolving bacteria from 'miliolite', a bioclastic limestone, from Gopnath, Gujarat, Western India. Microbes Environ 27, 334-337.  https://doi.org/10.1264/jsme2.ME11347
  53. Subrahmanyam G, Shen JP, Liu YR, Archana G, Zhang LM (2016) Effect of long-term industrial waste effluent pollution on soil enzyme activities and bacterial community composition. Environ Monit Assess 188, 1-13.  https://doi.org/10.1007/s10661-016-5099-4
  54. Subrahmanyam G, Kalita M, Krondashree D, Chutia M, Das R (2018) Isolation and morphological characterization of a fungal isolate obtained from muscardine diseased muga silkworm Antheraea assamensis Helfer (Lepidoptera: Saturniidae). Int J Microbiol Res 10, 1435-1440. 
  55. Subrahmanyam G, Esvaran VG, Ponnuvel KM, Hassan W, Chutia M, Das R (2019) Isolation and molecular identification of microsporidian pathogen causing nosemosis in Muga Silkworm, Antheraea assamensis Helfer (Lepidoptera: Saturniidae). Ind J Microbiol 59, 525-529.  https://doi.org/10.1007/s12088-019-00822-0
  56. Subrahmanyam G, Das R, Debnath R, Chutia M, Ponnuvel KM, Sathyanarayana K (2023) Characterization of bacterial pathogens in muga silkworm, Antheraea assamensis Helfer (Lepidoptera: Saturniidae). J Environ Biol 43, 1-6. 
  57. Thines M, Crous PW, Aime MC, Aoki T, Cai L, Hyde KD, et al. (2018) Ten reasons why a sequence-based nomenclature is not useful for fungi anytime soon. IMA Fungus 9, 177-183.  https://doi.org/10.5598/imafungus.2018.09.01.11
  58. Tikader A, Vijayan K, Saratchandra B (2013) Muga silkworm, Antheraea assamensis (Lepidoptera: Saturniidae) - an overview of distribution, biology and breeding. Eur J Entomol 110, 293-300.  https://doi.org/10.14411/eje.2013.096
  59. Unni BG, Dowarah P, Wann S, Gangadharrao A (2011) Muga heal-Terminalia chebula based bioformulation as an antiflacherie agent and a silk fiber enhancer. Sci Cult 77, 11-12. 
  60. Vega FE, Kaya HK (2012) Insect pathology (Second Edition). Academic press, Elsevier, Amsterdam.
  61. Wang JJ, Yang L, Qiu X, Liu YG, Zhou W, Wan YJ (2013) Diversity analysis of Beauveria bassiana isolated from infected silkworm in southwest China based on molecular data and morphological features of colony. World J Microbiol Biotechnol 29, 1263-1269.  https://doi.org/10.1007/s11274-013-1289-1
  62. Wang Y, Geng L, Xu J, Jiang P, An Q, Pu Y, et al. (2020) Expression and identification of a novel spore wall protein in microsporidian Nosema bombycis. J Eukaryot Microbiol 67, 671-677.  https://doi.org/10.1111/jeu.12820
  63. Yan W, Shen Z, Tang X, Xu L, Li Q, Yue Y, et al. (2014) Detection of Nosema bombycis by FTA cards and loop-mediated isothermal amplification (LAMP). Curr Microbiol 69, 532-540.  https://doi.org/10.1007/s00284-014-0619-3
  64. Yang D, Pan G, Dang X, Shi Y, Li C, Peng P, et al. (2015) Interaction and assembly of two novel proteins in the spore wall of the microsporidian species Nosema bombycis and their roles in adherence to and infection of host cells. Infect Immun 83, 1715-1731.  https://doi.org/10.1128/IAI.03155-14
  65. Yang D, Pan L, Peng P, Dang X, Li C, Li T, et al. (2017) Interaction between SWP9 and polar tube proteins of the microsporidian Nosema bombycis and function of SWP9 as a scaffolding protein contribute to polar tube tethering to the spore wall. Infect Immun 85, e00872-16. 
  66. Zhang Y, Yang X, Zhang J, Ma M, He P, Li Y, et al. (2022) Isolation and identification of two Beauveria bassiana strains from silkworm, Bombyx mori. Folia Microbiol (Praha) 67, 891-898.  https://doi.org/10.1007/s12223-022-00986-1
  67. Zhang ZQ, He C, Li ML (2014) Analysis of intestinal bacterial community diversity of adult Dastarcus helophoroides. J Insect Sci 14, 114.