
J. lnf. Commun. Converg. Eng. 21(3): 185-191, Sep. 2023 Regular paper

185

Received 15 February 2022, Revised 29 March 2022, Accepted 29 March 2022
*Corresponding Author Ziyad Almudayni (E-mail: 20167676@students.latrobe.edu.au)
Department of Computer Science and Information La Trobe University, Melbourne 3086, Australia

https://doi.org/10.56977/jicce.2023.21.3.185 print ISSN: 2234-8255 online ISSN: 2234-8883

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright ⓒ The Korea Institute of Information and Communication Engineering

A Novel Approach of Using Data Flipping for Efficient Energy
on the Internet of Things

Ziyad Almudayni*, Ben Soh , and Alice Li

Department of Computer Science and Information La Trobe University, Melbourne 3086, Australia

Abstract

The Internet of Things (IoT) can be defined as the connection of devices, sensors, and actors via the Internet to a single network

to provide services to end-users. Owing to the flexibility and simplicity of IoT devices, which impart convenience to end-users,

the demand for these devices has increased significantly in the last decade. To make these systems more scalable, achieve a

larger number of connected devices, and achieve greater economic success, it is vital to develop them by considering parameters

such as security, cost, bandwidth, data rate, and power consumption. This study aims to improve energy efficiency and prolong

the lifetime of IoT networks by proposing a new approach called the constrained application protocol CoAP45. This approach

reduces the number of updates to the CoAP server using a centralized resource. The simulation results show that the proposed

approach outperforms all existing protocols.

Index Terms: CoAP, Energy, Centralized resource, Node.js, MATLAB

I. INTRODUCTION

In the Internet of Things (IoT) networks, devices, sensors,

and actors communicate via the Internet to serve the end-

users [1]. IoT services make users’ lives more convenient

and flexible; consequently, the demand for IoT services is

increasing [2]. Therefore, developing and enhancing these

systems with a focus on security, cost, bandwidth, data rates,

and power consumption is vital. Furthermore, because devel-

opers’ interests vary depending on their fields of specializa-

tion, they need to cooperate in a parallel manner to improve

all IoT device parameters. Improvements in any of the four

layers of the IoT architecture (the perception, middleware,

network, and application layers) can positively affect the IoT

system parameters. Therefore, developers must work more

in-depth to select suitable parameters and target-specific IoT

layers to achieve their objectives.

This study aims to improve one of the most important

parameters of connected devices, namely the energy effi-

ciency of IoT devices. Enhancing the energy efficiency and

prolonging the network lifetime of IoT networks can be

achieved without directly reducing the watts or joules; it can

also be achieved by improving the parameters of any of the

four IoT architecture layers. Therefore, in this study, we spe-

cifically target the application layer to prolong the lifetime

of an IoT network. There are various application protocols,

such as Message Queuing Telemetry Transport (MQTT),

Constrained Application Protocol (CoAP), Data Distribution

Service (DDS), and Extensible Messaging and Presence Pro-

tocol (XMPP); however, for more in-depth work and to

enhance precision, we chose only one application protocol,

CoAP. The fundamental purpose of our design is to modify

the time interval for the IoT nodes, such as temperature and

humidity, to update the CoAP server with new values. This

is discussed further in the following sections.

This paper consists of five sections. Section 1 presents an

https://orcid.org/0000-0002-9519-886X

J. lnf. Commun. Converg. Eng. 21(3): 185-191, Sep. 2023

https://doi.org/10.56977/jicce.2023.21.3.185 186

overview of the CoAP and its message types. Section 2

describes the message format of CoAP and outlines the four

main communication methods. Section 3 reviews previous

studies on improving the energy efficiency of IoT networks

using CoAP. Section 4 explains the work process of the new

algorithm CoAP45 and fills in the gaps in exciting protocols:

the standard approach, tuning approach, update on different

readings approach, and Fibonacci approach. Section 5 pres-

ents the tools used to implement CoAP45 and the method for

calculating the battery level. The final section discusses the

implementation results of CoAP45 and compares them with

existing application protocols.

II. CONSTRAINED APPLICATION PROTOCOL
(COAP)

The IETF Constrained RESTful Environments (CoRE)

working group developed a Constrained Application Proto-

col (CoAP) to enable machine-to-machine communication in

a real environment. CoAP and HTTP are very similar in

using a request/response communication structure and the

same RESTful methods. The main difference between CoAP

and HTTP is the type of communication protocol: CoAP

runs over UDP, and HTTP runs over TCP. The UDP commu-

nication protocol helps the CoAP protocol to reduce the

bandwidth size and simplify low-power communications for

IoT applications. As UDP does not provide high-level mes-

sage accuracy, CoAP successfully leverages some mecha-

nisms to overcome the unreliability of messaging at the

application layer to achieve greater accuracy and reliability.

The following message types were used to ensure the reli-

ability of the CoAP. Confirmable (CON): Like HTTP, both

require an acknowledgment (ACK) of messages received

between clients and servers. NON-Confirmable (NON): A

message can be sent without acknowledgment; however, this

is a low-accuracy message. Acknowledgment (ACK): The

confirmation message that a CON uses to confirm the recep-

tion of messages. Reset (RST): Response when a message

cannot be processed [3]. Fig. 1 shows the difference between

confirmable and non-confirmable messages.

III. COAP MESSAGE FORMAT AND METHODS

The message formats of the IoT application protocols can

be distinguished from one another by their size and format.

For instance, the message size of MQTT is 2 bytes, whereas

that of CoAP is 4 bytes. The communication mechanism in

application protocols can be deduced from the message for-

mat. This section discusses the format and methods of the

CoAP application protocol.

 The message format is divided into two main layers, con-

taining five parts in total.

The first layer is responsible for controlling message pack-

ets. It has three parts:

1. Version (2-bits): which decelerates the CoAP version

number.

2. Type (2-bits): This indicates whether the message type

is confirmable (0), non-confirmable (1), acknowledgment

(2), or reset (3).

3. Token length (4-bits): which indicates the length of a

variable.

The second layer defines the message ID and indicates

whether a message is a request or response to avoid issues

such as packet arrival. It has two parts:

1. Code (8-bits): This has four different codes: request

(0), success response (2), client error response (4), or server

error response (5).

2. Message-ID (16-bits): which provides a unique ID for

every message.

The CoAP protocol uses four methods to send and receive

messages to and from the client and server. These methods

are based on the following RESTful structures: GET, POST,

PUT, and DELETE. GET can obtain data, such as room

temperature, from URL requests. POST is used to create

new data using the requested parent URL. PUT updates the

data for the current readings. DELETE is used to delete data

via URL requests [4].

IV. RELATED WORKS

Centralized and distributed resource discovery (RD) are

the two main mechanisms by which CoAP application resources

frequently update the nodes’ current reading. In centralized

RD, devices use a single resource to process all queries. The

nodes must be updated several times regarding the server

status, which consumes considerable power. In a distributed

RD, the devices find resources by sending direct queries.

The server is usually updated with the current readings from

the nodes within a standard time of 10s; however, this was

modified by Yassein et al. (2020). The proposed method

aims to minimize the time required for the CoAP server to

be updated from the nodes to extend the network lifetime. To

achieve this, a node’s battery is split into four levels: Full
Fig. 1. Comparison between confirmable messages and NON-confirmable

messages.

A Novel Approach of Using Data Flipping for Efficient Energy on the Internet of Things

187 http://jicce.org

(100-95%) (10s for each update), High (95-50%) (40-60s for

each update), Low (50-5%) (80-100s for each update). Thus,

using the proposed approach, it is possible to obtain a 10%

increase in the network lifetime [5].

The standard CoAP mechanism was modified by Mardini

et al. [2018] to provide current readings to the CoAP server

using a centralized resource. The CoAP server is updated

every 10s from the nodes in standard CoAP. However, the

proposed approach requires that data be sent to the server

from IoT devices only when the reading environment changes

after the most recent update. Compared with the standard

CoAP protocol, the simulation results demonstrate that the

proposed method improves the network lifetime by 33% and

yields an 8% increase in the dynamic tuning approach [6].

To improve the energy efficiency of IoT systems, Jin et al.

[2017] introduced a sleep-scheduling technique to regulate

the sleep-wake status of the CoAP. Furthermore, the authors

slightly modified the IoT middleware layer to achieve this

objective. They updated the synchronicity of the IoT node

concerning the sleep status using the message queue (MQ)

and RD brokers. MQ uses the publish-subscribe method to

connect the web client application to the IoT nodes, while

RD searches for information for the IoT nodes registered in

the CoAP server. After sending the data to the MQ, the

CoAP node switches to sleep mode. The received data can

then be transferred from the CoAP node to the MQ, allowing

the CoAP to extract it before the status changes to sleep

mode. However, the authors failed to perform any experi-

ments comparing existing protocols with their proposed

method [7].

Lai et al. [2020] made efforts to improve the process of

transferring notifications from IoT applications to client

devices by proposing group-based message management

(GMM) for CoAP proxies. The following three modules

form the basis of the proposed mechanism.

Module 1: The client demands are used to categorize their

devices into groups.

Module 2: The cache memory capacity is modified to

enable a proxy response to requests using notifications.

Module 3: Combination of all notifications from different

IoT nodes requested by the client device. Based on simula-

tion results, the proposed module enhances the energy effi-

ciency of devices by minimizing the number of notifications

[8].

To prevent delays between the gateway (CoAP client) and

node (CoAP server), Vishakha et al. [2019] applied a time-

synchronization method to the CoAP protocol. In their

approach, the CoAP server was updated with the current

time from the CoAP client, and a time delay occurred when

there was a difference between the CoAP server time and the

current time. To ensure no time delays, a time difference was

added to the CoAP server to synchronize the server time

with that of the CoAP client. In contrast to the standard

CoAP, the authors’ modified CoAP protocol improves the

energy efficiency of WSNs. The simulation tool used by the

authors to implement their theory was NS2 [9].

Ludovici et al. [2012] adopted a novel approach to enhance

the average delivery ratio, energy consumption, and delay

performance of a CoAP application protocol. Using an e-

health application, the proposed approach was applied to a

real wireless sensor network (WSN). The proposed approach

aims to effectively utilize priorities in the CoAP application

protocol. There are two types of notifications (critical and

non-critical) and four priority levels for order notifications.

Server notifications to the observer were successfully

reduced with this approach because neither type of notifica-

tion was required at all levels, thus achieving the study’s

goal [10].

To resolve the issues of proxies in IoT devices that use

CoAP, Randhawa et al. [2018] employed a security protocol

known as OSCoAP (Object Security of CoAP). The scalabil-

ity and flexibility of communication between servers and cli-

ents in the CoAP protocol increased when using proxies. In

other words, the proxies helped improve device performance

by linking servers to clients. In data exchange, OSCoAP

encrypts and decrypts messages to protect these proxies and

secure the transmission between servers and clients. The pro-

posed approach increased the device’s energy efficiency by

10, improved battery life, and boosted memory efficiency

[11].

A new mechanism, AFT, was proposed by Albalas et al.

[2017] to adjust the time nodes take to transmit the current

reading in the centralized CoAP to resource discovery (RD).

In the proposed approach, the time required to update the

RD from the nodes, typically 10s, was altered to reduce the

power consumption and extend the network lifetime. In the

AFT method, the major criterion for updating the RD is the

node's battery level. As calculated using the Fibonacci-based

tuning algorithm, the time interval increased as the battery

level decreased. The Fibonacci interval kept increasing until

the battery level decreased to 5%, after which sleep mode

was activated for the node. Regarding overall network life-

time, the simulation results illustrated that the AFT was 75%

more effective than the standard CoAP [12].

Although all the above approaches have demonstrated that

they perform better than the standard CoAP regarding energy

efficiency, gaps still need to be addressed (see the following

section).

V. PROPOSED APPROACH

Previous modifications to the CoAP application protocol

have reduced the power consumption of IoT systems com-

pared to the standard CoAP application protocol. There are

two main techniques for saving power in CoAP, and both are

J. lnf. Commun. Converg. Eng. 21(3): 185-191, Sep. 2023

https://doi.org/10.56977/jicce.2023.21.3.185 188

linked to decreasing the frequency of CoAP server updates

to save power. In [6], the nodes update the CoAP server only

if they read new values. However, the proposed solution has

some gaps that need to be addressed, such as if the CoAP

server receives frequent updates in less than 10s, for exam-

ple, if it is updated every 5s. In this case, the modified CoAP

protocol consumes more power than the standard CoAP pro-

tocol because the nodes would read new with an interval of

less than 10s, whereas the standard CoAP updates the server

only every 10s. Another drawback is that when a node is

dead, the CoAP discovers that after 300 s, which is too long

to wait. In [5], the nodes update the CoAP server within a

time interval based on the battery level. The maximum time

interval required to update the CoAP server was 100 s when

the battery level was 5% to 25%. The drawback of the previ-

ously modified CoAP protocol is the delay in updating the

CoAP server with the current node reading, especially when

the time interval is 100s, which is very long compared to 10s

for the standard CoAP. In [12], the RD suffers from issues

with the freshness of the data because the interval between

updates can be too long. This is because the time interval is

based on the Fibonacci calculation, and the Fibonacci num-

ber increases when the battery level decreases. For instance,

when the Fibonacci number was 15, the interval was 610

min, which was longer than 10 min.

To address the gaps in the previously modified CoAP

application protocols, we propose a new approach called

CoAP45, which is an extension of the previously modified

CoAP protocols to address the gaps in them. Two issues in

previous works need to be fixed: the long wait for the CoAP

to be updated about whether a node is dead and the long

interval to update the server between readings. The proposed

approach, CoAP45, addresses these gaps to prolong the net-

work lifetime and improve the energy efficiency of IoT sys-

tems in the CoAP protocol by providing fresh updates at

satisfactory intervals. Concerning the freshness of the data,

the maximum interval between a node updating the CoAP

server in the centralized directory (RD) with the current

reading is 45s, and the maximum time that the RD would

wait to specify whether a node is dead is also 45s.

Equation (1) calculates the best maximum time interval for

nodes to update the CoAP server. In this equation, we con-

sider the freshness of the data to keep the CoAP server

updated as early as possible.

(1)

where A is the best current maximum time interval to update

the CoAP server (100s), and B is the time interval of the

standard CoAP protocol. The CoAP45 algorithm and Fig. 2

show how the proposed approach works, whereas Fig. 3

shows CoAP45-related components.

CoAP45 algorithm: If the battery life is between 70%

to 100%

Call the function (to update on different readings) in the

first 30s. If there are no changes, do not update the CoAP

server [odd update]; after another 30s, call the function (to

update on different readings), and in the [even update], force

nodes to update the CoAP server even if there are no

changes in the collected data to let the server know whether

or not the nodes are dead.

If the battery life is between 50% to 69%

Call the function (to update on different readings) in the

first 35s. If there are no changes, do not update the CoAP

server [odd update]; after another 35 s, call the function (to

update on different readings), and in the [even update], force

nodes to update the CoAP server even if there are no

changes in the collected data to let the server know whether

or not the nodes are dead.

If the battery life is between 25% to 49%

Call the function (to update on different readings) in the

first 40s; if there are no changes, do not update the CoAP

server [odd update]; after another 40 s, call the function (to

update on different readings); and in the [even update], force

A B– 2

Fig. 3. CoAP45-related components.

Fig. 2. How the proposed approach works.

A Novel Approach of Using Data Flipping for Efficient Energy on the Internet of Things

189 http://jicce.org

nodes to update the CoAP server even if there are no

changes in the collected data to let the server know whether

the nodes are dead.

If the battery life is between 6% to 24%

Call the function (to update on different readings) in the

first 45s; if there are no changes, do not update the CoAP

server[odd update]; after another 45s, call the function (to

update on different readings); and in the [even update], force

nodes to update the CoAP server even if there are no

changes in the collected data to determine whether the nodes

are dead.

If the battery life is between 1% to 5%

Emergency call

If the battery life is 0%: Dead nodes

VI. PERFORMANCE EVALUATION SETUP

Dataset: Mica2Dot sensors were deployed to collect data

from the Intel Berkeley Research Lab between 28 February

and 5 April 2004 (Fig. 4). Humidity, temperature, light, and

voltage were varied in the experiment. These parameters

were updated every 31s. TinyDB was used to extract infor-

mation from a network of TinyOS sensors [13]. Table 1 lists

the parameters used in this experiment.

Validation: Node.js, a JavaScript runtime built on Chrome’s

V8 JavaScript engine, validated the proposed approach.

Voltage Average: The average voltage was approximately

2.7 V as it ranged from 2-3 V.

Battery Level Calculations: The battery level was set to

7000 mJ for the full battery, as this is the full battery level

mentioned in all papers in the literature review.

7000 milli Joule = 7 Joule

mAh × voltage × 3.6 = Joule of energy

⇒ mAh =

= 0.7 mAh

The battery capacity is 0.7 mAh. However, because we

designated one day of the experiment to update the CoAP

server during the implementation, we extended the battery

lifetime to 24 h. The battery lasts for 24 h if there is no addi-

tional cost, such as updating the CoAP server or additional

degradation that affects lithium-ion batteries.

24 hour ⇒ the battery decreases 0.7 mAh

1 hour ⇒ mAh

1 second ⇒

Equation (2) is used to calculate the differences in the

power consumption of the battery from beginning to end.

The calculation was based on the time interval for nodes to

update the CoAP server with the current reading plus 10% as

a random additional cost (e.g., impact of temperature on the

battery) and the cost of one reading update. The cost of one

update was set as a constant to achieve accurate results when

the time interval was changed.

(2)

where EPC denotes the estimated power consumption, IPC is

the initial power consumption (which is frequently updated).

N is the number of updates in one-time intervals, and ε (the

cost for one update) is a constant number (2.1 mJ), which is

about 0.03% when the battery is 7000 mJ. The EP is energy

cost plus 10% of the additional cost to run the battery at a

specific time.

Table 2 presents the energy costs in millijoules for running

the battery at four different times: 10, 30, 35, 40, and 45 s.

The second row in the table outlines the energy cost required

to operate the battery for a time only without additional

costs. The third row represents the previous energy cost plus

the additional energy costs that impact the battery, such as

the effect of temperature degree. It is counted as +10% of

the energy cost.

Joule of energy

Voltage 3.6

0.7

24

0.7

24 3600

EPC IPC EP N + –=

Fig. 4. Intel Berkeley Research Lab.

Table 1. The parameters used in this experiment

Parameters Value

Operating system TinyOS

Database Type TinyDB

Sensor Type Mica2Dot

Value Types Humidity, temperature, light and voltage

Number of Sensors 54

Transmission Range 40.5 m * 31 m

Implementation Tool Nodejs

Full Battery 7000 mj

J. lnf. Commun. Converg. Eng. 21(3): 185-191, Sep. 2023

https://doi.org/10.56977/jicce.2023.21.3.185 190

VII. RESULTS AND DISCUSSION

MATLAB was used to compare the energy efficiency per-

formance and network lifetime of the standard CoAP, the

tuning approach, and the proposed CoAP45.

Fig. 5 compares the network lifetime of the battery (7000

mJ fully charged) when updating the CoAP server with the

current reading for the three different approaches. Different

sensors obtain three types of updates: temperature, humidity,

and light. The results in Fig. 5 prove that the proposed approach,

CoAP45, outperforms the existing standard and tuning approaches

regarding network lifetime and power consumption. In addi-

tion, the CoAP45 approach increased the network lifetime by

approximately 14.3% compared with the tuning approach.

Furthermore, 3500 mJ, approximately half of the battery

capacity, was shown to last for 82, 205, and 244 min for the

standard, tuning, and CoAP45 approaches, respectively.

Fig. 6 shows the network lifetime of the battery (7000 mJ

fully charged) when periodically refreshing the CoAP server

with the current reading. Various sensors have been used to

obtain temperature updates. The results in Fig. 6 prove that

the proposed approach, CoAP45, surpasses the standard and

tuning approaches regarding energy efficiency and network

lifetime. CoAP45 succeeded in prolonging network lifetime

by approximately 6% compared with the tuning approach

when updating the temperature because of its frequent updates.

Therefore, when the frequency of updates decreases, power

savings increase.

Fig. 7 shows the battery’s energy cost to update the CoAP

server with the current readings for the first 150 min. The

CoAP server receives updates from various sensors regard-

ing temperature, humidity, and light. The figure presents a

comparison of energy consumption using the three approaches.

The results in Fig. 7 prove that the proposed approach,

CoAP45, outperforms the existing approaches (the standard

and tuning approaches) regarding power consumption. The

energy costs in the first 150 min for the standard CoAP

approach were approximately 6350 and 2620 mJ, and the

CoAP45 approach was about 2166 mJ, respectively. These

figures emphasize that the proposed approach succeeded in

prolonging the network lifetime by approximately 65% com-

pared with the standard approach and 17% compared with

the tuning approach.

The power savings and the network lifetime for the

CoAP45 approach vary from one case to another depending

on the number of updates the CoAP server receives. The

number of updates in our scenarios was linked to changes in

the read data when the sensors detected new values. There-

fore, the network lifetime increases when the number of

updates decreases. Fig. 8 shows the network life for two

fully charged batteries (7000 mJ) when periodically updating

Fig. 5. Network lifetime for three types of sensor updates.

Fig. 6. Network lifetime for temperature updates.

Table 2. The energy cost in mj to run the battery at four different times

Time in

seconds

Energy cost

(mj)

Energy cost plus 10%

additional cost (mj) (EP)

Total

Percentage

10 s 0.78 0.86 0.012%

30 s 2.36 2.59 0.037%

35 s 2.75 3.03 0.043%

40 s 3.15 3.46 0.049%

45 s 3.54 3.89 0.055%

Fig. 7. Power consumption comparison.

A Novel Approach of Using Data Flipping for Efficient Energy on the Internet of Things

191 http://jicce.org

the CoAP server with current readings. The first battery was

responsible for the temperature changes, and the second bat-

tery was responsible for the light changes. In our scenario,

the temperature changes more frequently than under light.

The results proved that network life increased when the

number of updates decreased. The network lifetime of the

battery responsible for temperature updates was approxi-

mately 805 min, compared with approximately 911 min for

the battery responsible for light updates.

VIII. CONCLUSION

The proposed CoAP45 modifies the frequency of the stan-

dard CoAP application protocol to update the CoAP server

regarding current reading in centralized resources, which

prolongs the network lifetime of IoT devices. Using the

Node.js platform, the simulation results showed that the pro-

posed approach achieved better results than four approaches:

the Fibonacci approach, the update on different reading

approaches, the standard CoAP approach, and the battery-

level approach in terms of the freshness of data and the lifes-

pan of the IoT networks.

REFERENCES

[1] F. E. F. Samann, S. R. Zeebaree, and S. Askar, “IoT provisioning
QoS based on cloud and fog computing,” Journal of Applied Science

and Technology Trends, vol. 2, no. 01, pp. 29-40, Mar. 2021. DOI:

10.38094/jastt20190.
[2] S. Nižetić, P. Šolić, D. L.-I. González-de, and L. Patrono, “Internet of

Things (IoT): Opportunities, issues and challenges towards a smart
and sustainable future,” Journal of Cleaner Production, vol. 274, p.
122877, Nov. 2020. DOI: 10.1016/j.jclepro.2020.122877.

[3] M. Martí, C. Garcia-Rubio, and C. Campo, “Performance evaluation
of CoAP and MQTT_SN in an IoT environment,” in Multidisciplinary

Digital Publishing Institute Proceedings, vol. 31, no. 1, p. 49. Nov.
2019. DOI: 10.3390/proceedings2019031049.

[4] R. A. Rahman and B. Shah, “Security analysis of IoT protocols: A
focus in CoAP,” in 2016 3rd MEC international conference on big

data and smart city (ICBDSC), Muscat, Oman, pp. 1-7, 2016. DOI:
10.1109/ICBDSC.2016.7460363.

[5] M. B. Yassein, I. Hmeidi, O. Meqdadi, F. Alghazo, B. Odat, O.
AlZoubi, and A. Smairat, “Challenges and techniques of constrained
application protocol (CoAP) for efficient energy consumption,” in
2020 11th International Conference on Information and Communication

Systems (ICICS), Irbid, Jordan, pp. 373-377, 2020. DOI: 10.1109/
ICICS49469.2020.239564.

[6] W. Mardini, M. B. Yassein, M. AlRashdan, A. Alsmadi, and A. B.
Amer, “Application-based power saving approach for IoT CoAP
protocol,” in Proceedings of the First International Conference on

Data Science, E-learning and Information Systems, Madrid, Spain,
pp. 1-5, 2018. DOI: 10.1145/3279996.3280008.

[7] W. Jin and D. Kim, “A sleep-awake scheme based on CoAP for
energy-efficiency in internet of things,” JOIV: International Journal

on Informatics Visualization, vol. 1, no. 4, pp. 110-114, Nov. 2017.
DOI: 10.30630/joiv.1.4.37.

[8] W.-K. Lai, Y.-C. Wang, and S.-Y. Lin, “Efficient scheduling,
caching, and merging of notifications to save message costs in IoT
networks using CoAP,” IEEE Internet of Things Journal, vol. 8, no.
2, pp. 1016-1029, Jan. 2021. DOI: 10.1109/JIOT.2020.3009332.

[9] V. D. Khatade and M. A. Askhedkar, ”Time synchronization for
CoAP using NS2,” in 2019 5th International Conference On

Computing, Communication, Control And Automation (ICCUBEA),
Pune, India, pp. 1-4, 2019. DOI: 10.1109/ICCUBEA47591.2019.
9129316.

[10] A. Ludovici, E. Garcia, X. Gimeno, and A. C. Augé, “Adding QoS
support for timeliness to the observe extension of CoAP,” in 2012

IEEE 8th International Conference on Wireless and Mobile

Computing, Networking and Communications (WiMob), Barcelona,
Spain, pp. 195-202, 2012. DOI: 10.1109/WiMOB.2012.6379074.

[11] R. H. Randhawa, A. Hameed, and A. N. Mian, “Energy efficient
cross-layer approach for object security of CoAP for IoT devices,”
Ad Hoc Networks, vol. 92, p. 101761, Sep. 2019. DOI: 10.1016/
j.adhoc.2018.09.006.

[12] F. Albalas, W. Mardini, and M. Al-Soud, “Aft: Adaptive fibonacci-
based tuning protocol for service and resource discovery in the
internet of things,” in 2017 Second international conference on fog

and mobile edge computing (FMEC), Valencia, Spain, pp. 177-182,
2017. DOI: 10.1109/FMEC.2017.7946427.

[13] Intel Lab Data [Online] Available: http://db.csail.mit.edu/labdata/
labdata.html.

Ziyad Almudayni
Ziyad Almudayni is a PhD candidate at La Trobe University. I have done five publications in different conferences and

journals. All publications are about the Internet of Things.

Fig. 8. Network lifetime for temperature and light updates.

