DOI QR코드

DOI QR Code

The complete chloroplast genome sequence of Rhododendron caucasicum (Ericaceae)

  • Myounghai KWAK (National Institute of Biological Resources) ;
  • Rainer W. BUSSMANN (Institute of Botany and Bakuriani Alpine Botanical Garden, Ilia State University)
  • Received : 2023.08.18
  • Accepted : 2023.09.21
  • Published : 2023.09.30

Abstract

Rhododendron caucasicum Pall. is a shrub distributed in the mountainous areas of the Caucasus from northeastern Türkiye towards the Caspian Sea. This study reports the first complete chloroplast genome sequence of R. caucasicum. The plastome is 199,487 base pairs (bp) long and exhibits a typical quadripartite structure comprising a large single-copy region of 107,645 bp, a small single-copy region of 2,598 bp, and a pair of identical inverted repeat regions of 44,622 bp each. It contains 143 genes, comprising 93 protein-coding genes, 42 tRNA genes, and eight rRNA genes. The large chloroplast genome size is likely due to the expansion of inverted repeats. A phylogenetic analysis of chloroplast genomes with other Rhododendron species supports previously recognized infrageneric relationship.

Keywords

Acknowledgement

This research was supported by grants from the National Institute of Biological Resources, funded by the Ministry of Environment of the Republic of Korea (Grant No. NIBR202207101). This project was carried out in collaboration under the Memorandum of Understanding signed by National Institute of Biological Resources and Ilia State University. The authors are grateful to Prof. Ohseok Kwon at Kyungpook National University for his work on this cooperative project and to Dr. Jongsun Park and Dr. Woochan Kwon at Infoboss for their assistance on assembly and annotation.

References

  1. Bolger, A. M., L. Lohse and B. Usadel. 2014. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114-2120.  https://doi.org/10.1093/bioinformatics/btu170
  2. Chan, P. P. and T. M. Lowe. 2019. tRNAscan-SE: Searching for tRNA genes in genomic sequences. In Gene Prediction. Methods in Molecular Biology, Vol. 1962. Kollmar, M. (ed.), Humana, New York. Pp. 1-14. 
  3. Daniell, H., C.-S. Lin, M. Yu and W.-J. Chang. 2016. Chloroplast genomes: Diversity, evolution, and applications in genetic engineering. Genome Biology 17: 134. 
  4. Doyle, J. J. and J. L. Doyle. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin 19: 11-15. 
  5. Fan, Y., Y. Jin, M. Ding, Y. Tang, J. Cheng, K. Zhang and M. Zhou. 2021. The complete chloroplast genome sequences of eight Fagopyrum species: Insights into genome evolution and phylogenetic relationships. Frontiers in Plant Science 12: 799904. 
  6. Frodin, D. G. 2004. History and concepts of big plant genera. Taxon 53: 753-776.  https://doi.org/10.2307/4135449
  7. Gitzendanner, M. A., P. S. Soltis, G. K.-S. Wong, B. R. Ruhfel and D. E. Soltis. 2018. Plastid phylogenomic analysis of green plants: A billion years of evolutionary history. American Journal of Botany 105: 291-301.  https://doi.org/10.1002/ajb2.1048
  8. Greiner, S., P. Lehwark and R. Bock. 2019. OrganellarGenome-DRAW (OGDRAW) version 1.3.1: Expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Research 47: W59-W64.  https://doi.org/10.1093/nar/gkz238
  9. Kalyaanamoorthy, S., B. Q. Minh, T. K. F. Wong, A. von Haeseler and L. S. Jermiin. 2017. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods 14: 587-589.  https://doi.org/10.1038/nmeth.4285
  10. Kawabe, A, H. Nukii and H. Y. Furihata. 2018. Exploring the history of chloroplast capture in Arabis using whole chloroplast genome sequencing. International Journal of Molecular Sciences 19: 602. 
  11. Li, H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at arXiv: https://doi.org/10.48550/arXiv.1303.3997. 
  12. Li, H.-T., T.-S. Yi, L.-M. Gao, P.-F. Ma, T. Zhang, J.-B. Yang, M. A. Gitzendanner, P. W. Fritsch, J. Cai, Y. Luo, H. Wang, M. van der Bank, S.-D. Zhang, Q.-F. Wang, J. Wang, Z.-R. Zhang, C.-N. Fu, J. Yang, P. M. Hollingsworth, M. W. Chase, D. E. Soltis, P. S. Soltis and D.-Z. Li. 2019. Origin of angiosperms and the puzzle of the Jurassic gap. Nature Plants 5: 461-470.  https://doi.org/10.1038/s41477-019-0421-0
  13. Liu, B.-B., C. Ren, M. Kwak, R. G. J. Hodel, C. Xu, J. He, W.-B. Zhou, C.-H. Huang, H. Ma, G.-Z. Qian, D.-Y. Hong and J. Wen. 2022. Phylogenomic conflict analyses in the apple genus Malus s.l. reveal widespread hybridization and allopolyploidy driving diversification, with insights into the complex biogeographic history in the Northern Hemisphere. Journal of Integrative Plant Biology 64: 1020-1043.  https://doi.org/10.1111/jipb.13246
  14. Ma, L.-H., H.-X. Zhu, C.-Y. Wang, M.-Y. Li and H.-Y. Wang. 2021. The complete chloroplast genome of Rhododendron platypodum (Ericaceae): An endemic and endangered species from China. Mitochondrial DNA Part B: Resources 6: 196-197.  https://doi.org/10.1080/23802359.2020.1860714
  15. Milne, R. I. 2004. Phylogeny and biogeography of Rhododendron subsection Pontica, a group with a tertiary relic distribution. Molecular Phylogenetics and Evolution 33: 389-401.  https://doi.org/10.1016/j.ympev.2004.06.009
  16. Milne, R. I., C. Davies, R. Prickett, L. H. Inns and D. F. Chamberlain. 2010. Phylogeny of Rhododendron subgenus Hymenanthes based on chloroplast DNA markers: Between-lineage hybridization during adaptive radiation? Plant Systematics and Evolution 285: 233-244.  https://doi.org/10.1007/s00606-010-0269-2
  17. Minh, B. Q., M. A. T. Nguyen, A. von Haeseler. 2013. Ultrafast approximation for phylogenetic bootstrap. Molecular Biology and Evolution 30: 1188-1195.  https://doi.org/10.1093/molbev/mst024
  18. Nguyen, L.-T., H. A. Schmidt, A. von Haeseler and B. Q. Minh. 2015. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution 32: 268-274.  https://doi.org/10.1093/molbev/msu300
  19. Olejniczak, S. A., E. Lojewska, T. Kowalczyk and T. Sakowicz. 2016. Chloroplasts: State of research and practical applications of plastome sequencing. Planta 244: 517-527.  https://doi.org/10.1007/s00425-016-2551-1
  20. Ronquist, F., M. Teslenko, P. van der Mark, D. L. Ayres, A. Darling, S. Hohna, B. Larget, L. Liu, M. A. Suchard, and J. P. Huelsenbeck. 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539-542.  https://doi.org/10.1093/sysbio/sys029
  21. Shrestha, N., Z. Wang, X. Su, X. Xu, L. Lyu, Y. Liu, D. Dimitrov, J. D. Kennedy, Q. Wang, Z. Tang and X. Feng. 2018. Global patterns of Rhododendron diversity: The role of evolutionary time and diversification rates. Global Ecology and Biogeography 27: 913-924.  https://doi.org/10.1111/geb.12750
  22. Wang, Z.-F., L.-W. Chang and H.-L. Cao. 2021. The complete chloroplast genome of Rhododendron kawakamii (Ericaceae). Mitochondrial DNA Part B: Resources 6: 2538-2540.  https://doi.org/10.1080/23802359.2021.1959439
  23. Xia, X.-M., M.-Q Yang, C.-L. Li, S.-X Huang, W.-T. Jin, T.-T. Shen, F. Wang, X.-H. Li, W. Yoichi, L.-H. Zhang, Y.-R. Zheng, X.-Q. Wang. 2022. Spatiotemporal evolution of the global species diversity of Rhododendron. Molecular Biology and Evolution 39(1): msab314. 
  24. Xiang, C.-Y., F. Gao, I. Jakovlic, H.-P. Lei, Y. Hu, H. Zhang, H. Zou, G.-T. Wang and D. Zhang. 2023. Using PhyloSuite for molecular phylogeny and tree?based analyses. iMeta 2: e87.
  25. Zerbino, D. R. and E. Birney. 2008. Velvet: Algorithms for de novo short read assembly using de Bruijn graphs. Genome Research 18: 821-829.  https://doi.org/10.1101/gr.074492.107
  26. Zhang, D., F. Gao, I. Jakovlic, H. Zou, J. Zhang, W. X. Li and G.T. Wang. 2020. PhyloSuite: An integrated and scalable desktop platform for streamlined molecular sequence data management and evolutionary phylogenetics studies. Molecular Ecology Resources 20: 348-355.  https://doi.org/10.1111/1755-0998.13096
  27. Zhao, Q.-Y., Y. Wang, Y.-M. Kong, D. Luo, X. Li and P. Hao. 2011. Optimizing de novo transcriptome assembly from short-read RNA-Seq data: A comparative study. BMC Bioinformatics 12(Suppl 14): S2.