DOI QR코드

DOI QR Code

TSP탐사를 이용한 터널 굴착면 전방 지질상태 및 함수대 분석

Analysis of geological conditions and water bearing zones in front of tunnel face using TSP

  • 임경학 (수원대학교 토목공학과 ) ;
  • 박연준 (수원대학교 토목공학과)
  • Kyounghak Lim (Department of Civil Engineering, The University of Suwon) ;
  • Yeonjun Park (Department of Civil Engineering, The University of Suwon)
  • 투고 : 2023.07.26
  • 심사 : 2023.09.15
  • 발행 : 2023.09.30

초록

터널 굴착면 전방의 지질상태 및 함수대 예측을 분석하기 위하여 단층파쇄대 붕락구간에서 TSP탐사를 수행하였다. TSP탐사 결과는 예측구간의 막장면 관찰 결과와 비교하여 검증하였다. TSP탐사의 암질 예측 결과는 막장면 관찰 결과와 비교하여 약 3~10 m의 오차가 발생하였으나 전반적인 암질 변화 및 지반상태는 비교적 유사한 것으로 분석되었다. 막장면 관찰의 함수대에서 탄성파 속도비는 1.79~2.37, 포아송비는 0.27~0.39의 범위를 보인다. 함수대 이외 구간(젖은상태(wet))의 탄성파 속도비는 1.61~1.89, 포아송비는 0.19~0.3의 값을 보인다. 탄성파 속도비와 포아송비 분포를 분석하면 탄성파 속도비는 2.0 이상, 포아송비는 0.3 이상에서 함수대 가능성이 높은 구간으로 분석된다.

To analyze the prediction of geological conditions and water-bearing zones, TSP was performed in the collapse zone of the fault zone. The results of the TSP were verified by comparing them to the face mapping results of the prediction zone. The rock quality prediction result of the TSP had an error of about 3 to 10 meters compared to the face mapping result, but the overall rock quality change and ground condition were analyzed to be relatively similar. In the water-bearing zones of the face mapping results, the Vp/Vs ratio ranges from 1.79 to 2.37 and the Poisson's ratio ranges from 0.27 to 0.39. In the sections other than the water-bearing zones, the Vp/Vs ratio ranges from 1.61 to 1.89, and the Poisson's ratio ranges from 0.19 to 0.3. As a result of analyzing the Vp/Vs ratio and Poisson's ratio in the water-bearing zones, it is analyzed that the sections with a Vp/Vs ratio of 2.0 or more and a Poisson's ratio of 0.3 or more have a high possibility of being water-bearing zones.

키워드

참고문헌

  1. Amberg Technologies A.G. (2014a), TSP 303 Plus operation manual, Ver. 1.0.10.0, pp. 5-52. 
  2. Amberg Technologies A.G. (2014b), Amberg TSP Plus evaluation manual, Ver. 1.0.10.0, pp. 5-95. 
  3. Cho, H., Lim, J.S., Chung, Y.Y., Choi, S.Y. (1999), "A case study on the ground reinforcement method and effect of the failed tunnel", Proceedings of the KGS Spring '99 National Conference, Seoul, pp. 293-300. 
  4. Dickmann, T. (2014), "3D tunnel seismic prediction: a next generation tool to characterize rock mass conditions ahead of the tunnel face", Journal of Rock Mechanics & Tunnelling Technology (JRMTT), Vol. 20, No. 1, pp. 35-47. 
  5. Hardage, B.A. (1992), Crosswell Seismology & Reverse VSP, Geophysical Press, London, pp. 5-15. 
  6. Hasegawa, M., Usui, M., Gotoh, K. (1993), "Geological prognosis ahead of a tunnel face", Engineering Geology, Vol. 35, No. 3-4, pp. 229-235.  https://doi.org/10.1016/0013-7952(93)90011-Z
  7. Kim, N.Y., Kim, S.H., Chung, H.S. (2000), "Analysis of collapse shape and cause in the highway tunnel", Journal of Korean Tunnelling and Underground Space Association, Vol. 2, No. 3, pp. 13-23. 
  8. Lee, K.H. (2014), Predictions of ground conditions ahead of tunnel face applicable to TBM, Ph.D. Thesis, Korea University, pp. 1-2. 
  9. Park, J.H., Lee, K.H., Lee, S.W., Ryu, Y.M., Lee, I.M. (2015), "Utilization of induced polarization for predicting ground condition ahead of tunnel face in subsea tunnelling: laboratory test", Journal of Korean Tunnelling and Underground Space Association, Vol. 17, No. 3, pp. 383-392.  https://doi.org/10.9711/KTAJ.2015.17.3.383
  10. Ryu, I.C., Choi, S.G., Wee, S.M. (2006), "An inquiry into the formation and deformation of the Cretaceous Gyeongsang (Kyongsang) basin, southeastern Korea", Economic and Environmental Geology, Vol. 39, No. 2, pp. 129-149. 
  11. Sattel, G., Frey, P., Amberg, R. (1992), "Prediction ahead of the tunnel face by seismic methods - pilot project in Centovalli Tunnel, Locarno, Switzerland", First Break, Vol. 10, No. 1, pp. 19-25.  https://doi.org/10.3997/1365-2397.1992002
  12. Shin, H.S., Lee, S.H., Bae, G.J. (2007), "Survey of tunnel collapses", Proceedings of the KSCE Conference & Civil Expo 2007, No. 10, Daegu, pp. 2979-2982.