DOI QR코드

DOI QR Code

산소 후열처리에 따른 Ga2O3/SiC photodetector의 전기 광학적 특성

Impact of Oxygen Annealing on Deep-level Traps in Ga2O3/SiC Photodetectors

  • Seung-Hwan Chung (Dept. of Electronic materials Engineering, Kwangwoon University) ;
  • Tae-Hee Lee (Dept. of Electronic materials Engineering, Kwangwoon University) ;
  • Soo-Young Moon (Dept. of Electronic materials Engineering, Kwangwoon University) ;
  • Se-Rim Park (Dept. of Electronic materials Engineering, Kwangwoon University) ;
  • Hyung-Jin Lee (Dept. of Electronic materials Engineering, Kwangwoon University) ;
  • Geon-Hee Lee (Dept. of Electronic materials Engineering, Kwangwoon University) ;
  • Sang-Mo Koo (Dept. of Electronic materials Engineering, Kwangwoon University)
  • 투고 : 2023.08.25
  • 심사 : 2023.09.26
  • 발행 : 2023.09.30

초록

본 연구에서는 radio frequency (RF)-스퍼터링을 이용하여 SiC 기판 위에 Ga2O3 박막을 증착하여 Metal-Semiconductor-Metal (MSM) UV photodetector (PD)를 제작하였고, 산소 후열처리에 따른 PD 성능을 연구하였다. 산소 후열처리된 Ga2O3 박막은 외부 광에 대한 전류의 상당한 증가와 시간 의존성 on/off 광 응답 특성에서 측정된 감소시간이 1.21, 1.12 s로 후열처리를 하지 않은 박막의 감소시간인 1.34, 3.01 s 보다 더 빠른 반응을 보여주었다. 이러한 특성은 산소 후열처리 후의 산소 공공 및 결함 분포 변화에 기인한다. 우리의 연구 결과는 산소 후열처리가 PD 성능 향상에 영향을 미칠 수 있다는 것을 확인하였다.

In this work, we investigated the role of oxygen annealing on the performance of Metal-Semiconductor-Metal (MSM) UV photodetector (PD) fabricated by radio frequency (RF)-sputtered Ga2O3 films on SiC substrates. Oxygen-nnealed Ga2O3 films displayed a notable increase in photocurrent and a faster decay time, indicating a decrease in persistent photoconductivity. This improvement is attributed to the reduction of oxygen vacancies and variation of defects by oxygen post-annealing. Our findings provide valuable insights into enhancing PD performance through oxygen annealing.

키워드

과제정보

This work was supported by the Korea Institute for Advancement of Technology (KIAT) (P0012451), the National Research Foundation (NRF) funded by the Korea government(MSIT)(2021R1F1A1057620), and a research grant from Kwangwoon university in 2023.

참고문헌

  1. Baliga, B. J., "Fundamentals of power semiconductor devices," Springer Science & Business Media. 2010. DOI: 10.1007/978-0-387-47314-7
  2. S. J. Peatron, "A review of Ga2O3 materials, processing, and devices," Applied physics Reviews, Vol..5, pp.011301, 2018. DOI: 10.1063/1.5006941
  3. Zhang, Hao, et al. "Structural and optical properties of Nb-doped β-Ga2O3 thin films deposited by RF magnetron sputtering," Vacuum 146, pp.93-96. 2017. DOI: 10.1016/j.vacuum.2017.09.033
  4. Huang, Lu, et al. "Comparison study of β-Ga2O3 photodetectors grown on sapphire at different oxygen pressures," IEEE Photonics Journal, vol.9, no.4, pp.1-8, 2017. DOI: 10.1109/JPHOT.2017.2731625
  5. Lee, Young-Jae, et al. "Effect of Oxygen Annealing on the Characteristics of Isotype Ga2O3/4H-SiC Heterojunction Diodes," Journal of Nanoelectronics and Optoelectronics, vol.15. no.5, pp.561-565, 2020. DOI: 10.1166/jno.2020.2826.
  6. Zhang, Z., et al. "Deep level defects throughout the bandgap of (010) β-Ga2O3 detected by optically and thermally stimulated defect spectroscopy," Applied Physics Letters, vol.108, no.5, 2016. DOI: 10.1063/1.4941429
  7. Farzana, Esmat, et al. "Deep level defects in Ge-doped (010) β-Ga2O3 layers grown by plasma-assisted molecular beam epitaxy," Journal of Applied Physics, vol.123, no.16, 2018. DOI: 10.1063/1.5010608
  8. Farzana, Esmat, et al. "Impact of deep level defects induced by high energy neutron radiation in β-Ga2O3." Apl Materials, vol.7, no.2,
  9. Shen, Zhenghao, et al. "The effect of oxygen annealing on characteristics of β-Ga2O3 solar-blind photodetectors on SiC substrate by ion-cutting process," Journal of Alloys and Compounds 889, pp.161743, 2021. DOI: 10.1063/1.5054606
  10. Makula, Patrycja, Michal Pacia, and Wojciech Macyk. "How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-Vis spectra," The journal of physical chemistry letters vol.9, no.23, pp.6814-6817, 2018. DOI: 10.1021/acs.jpclett.8b02892
  11. Gan, Kai-Jhih, et al. "Highly durable and flexible gallium-based oxide conductive-bridging random access memory," Scientific reports, vol.9, no.1, 14141, 2019. DOI: 10.1038/s41598-019-50816-7.
  12. Chu, Shao-Yu, et al. "Investigation of Ga2O3-based deep ultraviolet photodetectors using plasma-enhanced atomic layer deposition system," Sensors, vol.20, no.21, 6159, 2020. DOI: 10.3390/s20216159
  13. Qin, Yuan, et al. "Review of deep ultraviolet photodetector based on gallium oxide," Chinese Physics B, vol.28, no.1, pp.018501, 2019. DOI: 10.1088/1674-1056/28/1/018501
  14. Zhang, Meng, et al. "High-performance photodiode-type photodetectors based on polycrystalline formamidinium lead iodide perovskite thin films," Scientific reports, vol.8, no.1, 11157, 2018. DOI: 10.1038/s41598-018-29147-6
  15. Liu, Zeng, et al. "Synergetic Effect of Photoconductive Gain and Persistent Photocurrent in a High-Photo-response Ga2O3 Deep-Ultraviolet Photodetector," IEEE Transactions on Electron Devices, vol.69, no.10, pp.5595-5602, 2022.
  16. Lang, D. V. "Deep-level transient spectroscopy: A new method to characterize traps in semiconductors," Journal of applied physics, vol.45, no.7, pp.3023-3032, 1974. DOI: 10.1063/1.1663719
  17. Feng, Zhaoqing, et al. "Influence of annealing atmosphere on the performance of a β-Ga 2 O 3 thin film and photodetector," Optical Materials Express, vol.8, no.8, pp.2229-2237 2018. DOI: 10.1364/OME.8.002229