DOI QR코드

DOI QR Code

LU-FACTORIZATION OF THE SQUARE-TYPE MATRIX OF THE STIRLING MATRIX

  • Received : 2023.07.18
  • Accepted : 2023.09.28
  • Published : 2023.09.30

Abstract

Let Sn = [S(i, j)]1≤i,j≤n and S*n = [S(i + j, j)]1≤i,j≤n where S(i, j) is the Stirling number of the second kind. Choi and Jo [On the determinants of the square-type Stirling matrix and Bell matrix, Int. J. Math. Math. Sci. 2021] obtained the diagonal entries of matrix U in the LU-factorization of S*n for calculating the determinant of S*n, where L = Sn. In this paper, we compute the all entries of U in the LU-factorization of matrix S*n. This implies the identities related to Stirling numbers of both kinds.

Keywords

References

  1. P. Barry, Exponential Riordan arrays and permutation enumeration, J. of Integer Sequences 13 (2010), Article 10.9.1.
  2. J.-H. Jung, Some Identities obtained by using the concept of exponential Rirodan matrices, East Asian Math. J. 39(1) (2023), 23-27.
  3. E. Choi, J. Jo, On the determinants of the square-type Stirling matrix and Bell matrix, Int. J. Math. Math. Sci. 2021 (2021), 7959370.
  4. Q. Ma, W. Wang, Riordan arrays and r-Stirling number identities, Discrete Math. 346(1) (2023), 113211.
  5. G. Nyul, G. R'acz, The r-Lah numbers, Discrete Math. 338(10) (2015), 1660-1666. https://doi.org/10.1016/j.disc.2014.03.029
  6. L.W. Shapiro, S. Getu, W.-J. Woan, L. Woodson, The Riordan group, Adv. Appl. Math. 34(1-3) (1991), 229-239. https://doi.org/10.1016/0166-218X(91)90088-E
  7. N.J.A. Sloane, The on-line encyclopedia of integer sequences, http://www.oeis.org.