Acknowledgement
이 성과는 2020년도 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. NRF-2020R1C1C1007302).
References
- S. Wang, "Analysis of Penalties Imposed in Violation of Industrial Safety and Health Act", Occupational Safety and Health Research Institute, 2018.
- N. Kim and H. Kim, "A study on the Law2Vec Model for Searching Related Law", Journal of Digital Contents Society, Vol. 18, No. 7, pp. 1419-1425, 2017. https://doi.org/10.9728/DCS.2017.18.7.1419
- Y. Suh, "A study on Visualizing Law for Universal Understanding of Occupational Safety and Health Act", Occupational Safety and Health Research Institute, 2021.
- A. Aizawa, "An Information-theoretic Perspective of Tfidf Measures", Information Processing and Management, Vol. 39, No. 1, pp. 45-65, 2003. https://doi.org/10.1016/S0306-4573(02)00021-3
- S. Lee and H. Kim, "Keyword Extraction from News Corpus using Modified TF-IDF", The Journal of Society for e-Business Studies, Vol. 14, No. 4, pp. 59-73, 2009.
- T. Mikolov, K. Chen, G. Corrado and J. Dean, "Efficient Estimation of Word Representations in Vector Space", arXiv preprint arXiv:1301.3781, 2013.
- T. Mikolov, I. Sutskever, K. Chen, G. Corrado and J. Dean, "Distributed Representations of Words and Phrases and their Compositionality", Advances in Neural Information Processing Systems 26, pp: 3111-3119, 2013.
- L. Ma and Y. Zhang, "Using Word2Vec to process big text data", IEEE International Conference on Big Data, 2015.
- E. Park and S. Cho, "KoNLPy: Korean natural language processing in Python", Proceedings of the 26th Annual Conference on Human and Cognitive Language Technology, pp. 133-136, 2014.
- S. Kang, S. Chang, J. Lee and Y. Suh, "Structuring Risk Factors of Industrial Incidents Using Natural Language Process", J. Korean Soc. Saf., Vol. 36, No. 1, pp. 56-63, 2021.
- R. Rehurek and P. Sojka, "Software Framework for Topic Modelling with Large Corpora", Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, Valletta Malta, pp. 45-50, 2010.
- S. Choi, J. Seol and S. Lee, "On Word Embedding Models and Parameters Optimized for Korean", Korean Language information Science Society, pp. 252-256, 2016.
- H. Kang and J. Yang, "Optimization of Word2vec Models for Korean Word Embeddings", Journal of Digital Contents Society, Vol. 20, No. 4, pp. 825-833, 2019. https://doi.org/10.9728/dcs.2019.20.4.825
- D. Smilkov, N. Thorat, C. Nicholson, E. Reif, Fernanda B. Viegas and M. Wattenberg, "Embedding Projector: Interactive Visualization and Interpretation of Embeddings", arXiv:1611.05469, 2016.
- Ministry of Employment and Labor, "Statistical Survey and Analysis of Industrial Disasters", 2021.