Acknowledgement
Also, all the authors thank the anonymous referee(s) and editorial members of the paper for their valuable recommendations. Once again, all the authors express their gratitude to the chief editor for giving us the opportunity to reset the manuscript in a nice way.
References
- Balraj, D., Marudai, M., Mitrovic, Z. D., Ege, O., Piramanantham, V., Existence of best proximity points satisfying two constraint inequalities, Electranic Research Archive 28 (1) (2020), 549-557. https://doi.org/10.3934/era.2020028
- Banach, S., Surles operations dans les ensembles abstract et leur application aux equation integrals, Fund.Math. 3 (1922), 133-181. https://doi.org/10.4064/fm-3-1-133-181
- Beer, G., Pai, D., Proximal maps, prox maps and coincidence points, Numerical Functional Analysis and Optimization 11 (5-6) (1990), 429-448. https://doi.org/10.1080/01630569008816382
- Berinde, M., Approximate fixed point theorems, Stud. Univ. "Babes-Bolyai", Mathematica LI 1 (2006), 11-25.
- Berinde, V. , Iterative approximation of fixed points, Editura Efemeride, Baia Mare, 2002.
- Berinde, V., On the approximation of fixed points of weak contractive mappings, Carpathian J. Math. 19 (1) (2003), 7-22.
- Bianchini, R. M. T., Su un problema di S. Reich riguardante la teoria dei punti fissi, Bolletino U.M.I. 4 (5) (1972), 103-106.
- Chatterjea, S.K., Fixed point theorems, C.R. Acad.Bulg. Sci. 25 (1972), 727-730.
- Ciric, L. B., Generalized contractions and fixed point theorems, Publ.Inst.Math.(Bulgr). 12 (26) (1971), 19-26.
- Dass, B. K., Gupta, S., An extension of Banach contraction principle through rational expression, Communicated by F.C. Auluck, FNA., (1975).
- Dey, D., Saha, M., Approximate fixed point of Reich operator, Acta Mathematica Universitatis Comenianae, (2012).
- Eldred, A. A., Veeramani, P., Existence and convergence of best proximity points, Journal of Mathematical Analysis and Applications, 323 (2) (2006), 1001-1006. https://doi.org/10.1016/j.jmaa.2005.10.081
- Fallahi, K., Rad, G. S., Fulga, A., Best proximity points for (φψ)-weak contractions and some applications, Filomat, 37 (6), (2023), 18351842.
- Gardasevic-Filipovic, M., Kukic, K., Gardasevic, D., Mitrovic, D., Some best proximity point results in the orthogonal O-complete b-metric-like spaces, Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences) 58 (2023), 105115.
- Hardy, G. E., Rogers, T. D., A generalization of fixed point theorem of Reich, Can. Math. Bull. 16 (1973), 201-206. https://doi.org/10.4153/CMB-1973-036-0
- Iqbal, M., Batool, A., Ege, O., de la Sen, M., Fixed point of generalized weak contraction in b-metric spaces, Journal of Function Spaces, (2021), 8 pages, Article ID 2042162.
- Iqbal, M., Batool, A., Ege, O., de la Sen, M., Fixed point of almost contraction in b-metric spaces, Journal of Mathematics (2020), 3218134, 1-6. https://doi.org/10.1155/2020/3218134
- Jaggi, D. S., Some unique fixed point theorems, Indian Journal of Pure and Applied Mathematics, 8, (1977), 223-230.
- Kannan, R., Some results on fixed points, Bull Calcutta Math. Soc 60 (1968), 71-76.
- Kannan, R., Some results on fixed points, II. Am. Math.Mon. 76 (1969), 405-408.
- Khan, M. S., A fixed point theorems for metric spaces, Rendiconti Dell 'istituto di mathematica dell' Universtia di tresti, 8, (1976), 69-72.
- Khuri, S. A., Louhichi, I., A novel Ishikawa-Green's fixed point scheme for the solution of BVPs, Appl. Math. Lett. 82 (2018), 50-57. https://doi.org/10.1016/j.aml.2018.02.016
- Kim, W. K., Lee, K. H., Corrigendum to existence of best proximity pairs and equilibrium pairs, J. Math. Anal. Appl. 316 (2006), 433-446. https://doi.org/10.1016/j.jmaa.2005.04.053
- Kirk, W. A., Reich, S., Veeramani, P., Proximinal retracts and best proximity pair theorems, Numerical Functional Analysis and Optimization 24 (7-8), (2003).
- Marudai, M., Bright V. S., Unique fixed point theorem weakly B-contractive mappings, Far East journal of Mathematical Sciences(FJMS) 98 (7) (2015), 897-914. https://doi.org/10.17654/FJMSDec2015_897_914
- Mohsenalhosseini, S.A.M., Approximate best proximate pairs in metric space for contraction maps, Fixed Point Theory 4 (2) (2014), 310-324.
- Mohsenalhosseini, S. A. M., Saheli. M., Some of family of contractive type maps and approximate common fixed point, J.Fixed Point Theory (2021), 2021:2.
- Mohsenalhosseini, S.A.M., Mzaheri, H.,Dehghan, M. A., Approximate best proximity pairs in metric space, Abstr. Appl. Anal., (2011), Article ID 596971.
- Nallaselli, G., Gnanaprakasam, A. J., Mani, G., Ege, O., Solving integral equations via admissible contraction mappings, Filomat, 36 (14), (2022), 4947-4961. https://doi.org/10.2298/FIL2214947N
- Reich, S., Some remarks connecting contraction mappings, Can. Math. Bull., 14, (1971), 121-124. https://doi.org/10.4153/CMB-1971-024-9
- Singer, I., Best approximation in normed linear spaces by elements of linear subspaces, Translated from the Romanian by Radu Georgescu. Die Grundlehren der mathematischen Wissenschaften, Band 171 Publishing House of the Academy of the Socialist Republic of Romania, Bucharest; Springer-Verlag, New York-Berlin, 1970.
- Tis, S., Torre, A., Branzei, R., Approximate fixed point theorems, Libertas Mathematica 23 (2003), 35-39.
- Vetrivel, V., Veeramani, P., Bhattacharyya, P., Some extensions of Fan's best approximation theorem, Numerical Functional Analysis and Optimization 13 (3-4), (1992), 397-402. https://doi.org/10.1080/01630569208816486
- W lodarczyk, K., Plebaniak, R., Banach, A., Best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spacand es, Nonlinear Analysis: Theory, Methods and Applications, 2009, 3332-3341.
- W lodarczyk, K., Plebaniak, R., Obczynski, C., Convergence theorems, best approximation and best proximity for set-valued dynamic systems of relatively quasi-asymptotic contractions in cone uniform spaces, Nonlinear Analysis: Theory, Methods and Applications 72 (2) (2010), 794-805. https://doi.org/10.1016/j.na.2009.07.024
- Xu, X. B., A result on best proximity pair of two sets, Journal of Approximation Theory 54 (3) (1988), 322-325. https://doi.org/10.1016/0021-9045(88)90008-1
- Zamfirescu, T., Fixed Point theorems in metric spaces, Arch. Math.(Basel) 23 (1972), 292-298. https://doi.org/10.1007/BF01304884