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ON THE NUMBER OF ZEROS OF BICOMPLEX ENTIRE

FUNCTIONS

Shahbaz Mir and Abdul Liman

Abstract. This paper portrays the results on bicomplex entire functions that are
concerned with the positioning of zeros of Eneström-Kakeya type. Moreover, some
examples are provided to validate our results.

1. Introduction

The classical Eneström-Kakeya theorem gives the lower and upper bounds on the
zeros of a complex polynomial with positive coefficients. Several generalisations of
this power tool of determining zeros have been obtained over the years (see [4], [5]
, [13]). Recently, Carney et. al [2] have extended it to quaternionic polynomials
which lack the commutativity in general. Our prior motive is to establish the analogs
results of this theorem for bicomplex entire functions which are of quite importance
in analytic number theory and the theory of error correcting codes. In addition,
bicomplex entire functions have applications in mathematical analysis, mathematical
physics, and engineering . They provide a framework for studying problems involving
multidimensional complex variables and can be used to model systems with bicomplex-
valued variables.

2. Background

Bicomplex algebra was introduced by Segre [12], who became inspired by the work
of Irish mathematician William Hamilton on quaternions and is actually a general-
isation of complex numbers. The set of bicomplex numbers is denoted by BC and
are generally represented as BC = {Z = z1 + jz2 | z1, z2 ∈ C}, where C is the set of
complex numbers with the imaginary unit i, and where i and j 6= i are commuting
imaginary units. Therefore they form a commutative integral domain but not a field,
as there exists infinite number of zero divisiors of the form Z = λ(1 ± ij), where
λ ∈ C\{0}. We start with a property of bicomplex numbers which has no analogs for
complex numbers and called as idempotent representation.
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2.1. Idempotent representation of bicomplex numbers. Consider the bicom-
plex numbers

e =
1 + ij

2
and e† =

1− ij
2

then

e.e† = 0 (i.e., each of them is a zero divisior).

Also

e2 = e and
(
e†
)2

= e†( i.e., they are idempotents).

Now for any Z = z1 + z2 ∈ BC we have

Z = z1 + jz2 =
z1 − iz2 + z1 + iz2

2
+ j

z2 + iz1 + z2 − iz1
2

=
z1 − iz2

2
+
z1 + iz2

2
+ ij

z1 − iz2
2

− ij z1 + iz2
2

= (z1 − iz2)
1 + ij

2
+ (z1 + iz2)

1− ij
2

,

that is,

(1) Z = α1e+ α2e
†,

where α1 = z1 − iz2 and α2 = z1 + iz2 are complex numbers. Formula (1) is
called the idempotent representation of the bicomplex number Z and is a unique
one. From the idempotent representation of any bicomplex number Z = z1 + jz2
as Z = (z1 − iz2) e + (z1 + iz2) e

†, we get the idea of defining two spaces A =
{z1 − iz2 : z1, z2 ∈ C} and A = {z1 + iz2 : z1, z2 ∈ C}, known as auxiliary complex
spaces. Though A and A contain same elements as in C but this convenient notation
are used for special representation of elements in the sense that each Z = z1 + jz2 =
(z1 − iz2) e+

(
z1 + iz2e

†) ∈ BC associates the points (z1 − iz2) ∈ A and (z1 + iz2) ∈ A.

Also to each point (z1 − iz2, z1 + iz2) ∈ A× A, there is a unique point in BC.

2.2. Cartesian Product. The cartesian set in BC determined by X1 ⊂ A and X2 ⊂
A is defined asX1×eX2 :=

{
z1 + jz2 ∈ BC : z1 + jz2 = ω1e+ ω2e

†, (ω1, ω2) ∈ X1 ×X2

}
.

2.3. The Euclidean norm of a bicomplex number. The Euclidean norm of a
bicomplex number Z = z1+jz2 = α1e+α2e

† ∈ BC is a function ‖‖ : BC→ R+denoted
by ‖Z‖ and given by:

‖Z‖ =

√
|z1|2 + |z2|2 =

1√
2

√
|α1|2 + |α2|2.

It is easy to verify that for any two bicomplex numbers Z and W ,

‖Z.W‖ ≤
√

2 ‖Z‖.||W‖.
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2.4. Open discus in BC. An open discus D (a; r1, r2) with centre a = a1e + a2e
†

and associated radii r1 > 0, r2 > 0 is defined as

D (a; r1, r2) = B (a1, r1)×e B (a2, r2)

=
{
ω1e+ ω2e

† ∈ BC : |ω1 − a1| < r1, |ω2 − a2| < r2
}
,

where B(z, r) represent open ball with centre z and radius r.

2.5. Closed discus in BC. A closed discus D̄ (a; r1, r2) with centre a = a1e + a2e
†

and associated radii r1 > 0, r2 > 0 is defined as

D (a; r1, r2) = B̄ (a1, r1)×e B̄ (a2, r2)

=
{
ω1e+ ω2e

† ∈ BC : |ω1 − a1| ≤ r1, |ω2 − a2| ≤ r2
}
,

where B̄(z, r) represent closed ball with centre z and radius r.

Geometrically, D̄ (a; r1, r2) represents a double cylinder (duocylinder) in 4 dimen-
sional Euclidean space.

2.6. Entire function in BC. A bicomplex entire function f(Z) can be represented

by an everywhere convergent power series as f(Z) =
∞∑
s=0

AsZ
s, where As are bicomplex

numbers.

2.7. Bicomplex Polynomial. Let p(Z) =
n∑
s=0

AsZ
s be a bicomplex polynomial of

degree n, then p has the idempotent representation as

p(Z) =
n∑
s=0

(αsζ
s
1) e+

n∑
s=0

(βsζ
s
2) e† = p1 (ζ1) e+ p2 (ζ2) e

†,

where p1 and p2 are considered as complex polynomials in one variable. To have
more detailed information on bicomplex numbers, refer to the book “ Bicomplex Holo-
morphic Functions: The Algebra, Geometry and Analysis of Bicomplex Numbers” by
M. Elena Luna-Elizarrarás et. al [7].

The study of location of zeros of bicomplex entie functions and in particular bi-
complex polynomials is not as easy as complex polynomials. There exists bicomplex
polynomials which have no zero in BC or having infinite number of zeros. For that
reason, let us first state the analogue of the fundamental theorem of algebra for bi-
complex polynomials [8].

Theorem 2.1. Consider a bicomplex polynomial p(Z) =
n∑
s=0

AsZ
s. If all the coef-

ficients As with the exception of the free term A0 = γ0e+ δ0e
† are complex multiples

of e (respectively of e†), but A0 has δ0 6= 0 (respectively γ0 6= 0), then p(Z) has no
roots. In all other cases, p(Z) has at least one root.

Example 2.1: Consider the bicomplex polynomial

(1 + ij)Z2 + 2 = 0.

This equation can be to written in idempotent form as:

2eZ2 + 2(e+ e†) = 0.
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This gives,

(Z2 + 1)e = 0,

e† = 0,

which has no roots.
Note: If p(Z) is a monic bicomplex polynomial of degree n, then p(Z) has exactly
n2 zeros.

So, finding the number of zeros of bicomplex entire functions in particular of poly-
nomials is not an easy task and with that motivation, we shall give some results that
predict the location of zeros of these functions of some special type. For that, we
require the following lemmas:

3. Lemmas

The first two lemmas are by G. B. Price [11].

Lemma 1. Let A = A1e + A2e
† =

{
ζ1e+ ζ2e

† : ζ1 ∈ A1, ζ2 ∈ A2

}
be a domain in

BC. A bicomplex function F = F1e + F2e
† : A −→ BC is said to be holomorphic if

and only if both the component functions F1 and F2 are complex holomorphic in A1

and A2 respectively.

Lemma 2. Let F be a bicomplex holomorphic function defined in a domain A =
A1e + A2e

† =
{
ζ1e+ ζ2e

† : ζ1 ∈ A1, ζ2 ∈ A2

}
such that F (Z) = F1 (ζ1) e + F2 (ζ2) e

†,

for all z = ζ1e + ζ2e
† ∈ A. Then, F (Z) has a zero in A if and only if F1 (ζ1) and

F2 (ζ2) both have zero at ζ1 in A1 and at ζ2 in A2 respectively.

The next lemma is credited to Hermann Amandus Schwarz and popularly known
as Schwarz lemma.

Lemma 3. If a complex function h(z) is holomorphic in |z| ≤ R such that h(0) = 0
and |h(z)| ≤M for |z| = R, then

|h(z)| ≤ M |z|
R

.

Finally, we require the following lemma which is due to Govil and Rahman [4].

Lemma 4. If for some real β

|arg aj − β| ≤ α ≤ π/2, aj 6= 0

and for some positive real numbers t1 and t2, t1 |aj| ≥ t2 |aj−1|, then

|t1aj − t2aj−1| ≤
(
t1 |aj| − t2|aj−1|

)
cosα +

(
t1|aj|+ t2|aj−1|

)
sinα.

4. Main Results

In this section, we present the following two main results:
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Theorem 4.1. Let f(Z) =
∞∑
s=0

AsZ
s be a bicomplex entire function with real

coefficients and for some ki ≥ 1,

k0A0 ≥ k1A1 ≥ . . . ≥ kr−1Ar−1 ≥ Ar ≥ . . . .

Then f(Z) does not vanish in the open discus D (0; t0, t0) , where

t0 =
|A0|

k0A0 + 2
r−1∑
m=0

|Am (km − 1)|
.

Proof. By using the fact e + e† = 1 and by the idempotent representation of a
bicomplex number Z, f(Z) can be expressed as

f(Z) =
∞∑
s=0

(
Ase+ Ase

†) (ζ1e+ ζ2e
†)s

=
∞∑
s=0

(
Ase+ Ase

†) (ζs1e+ ζs2e
†)

=
∞∑
s=0

Asζ
s
1e+

∞∑
s=0

Asζ
s
2e
†

= h1 (ζ1) e+ h2 (ζ2) e
†.

As f(Z) being entire is analytic in the closed discus D̄(0; 1, 1) ⊂ BC, therefore by
Lemma 1, h1 (ζ1) and h2 (ζ2) both are holomorphic respectively inX1 = {ζ1 ∈ A1 : |ζ1| ≤ 1}
⊂ C and X2 = {ζ2 ∈ A2 : |ζ2| ≤ 1} ⊂ C where A1 = {z1 − iz2 : z1, z2 ∈ C} and
A2 = {z1 + iz2 : z1, z2 ∈ C}.

Now consider the function

F (ζ1) = (ζ1 − 1)h1 (ζ1)

= −A0 + (A0 − A1) ζ1 + (A1 − A2) ζ
2
1 + . . .+ (Ar−2 − Ar−1) ζr−11 +

(Ar−1 − Ar) ζr1 + . . .

= −A0 + (k0A0 − k1A1 + A0 (1− k0) + A1 (k1 − 1)) ζ1

+ (k1A1 − k2A2 + A1 (1− k1) + A2 (k2 − 1)) ζ21 + . . .+

(kr−2Ar−2 − kr−1Ar−1 + Ar−2 (1− kr−2) + Ar−1 (kr−1 − 1)) ζr−11 +

(kr−1Ar−1 − Ar + Ar−1 (1− kr−1)) ζr1 + . . .

= −A0 +G(ζ1) where G(ζ1) = (k0A0 − k1A1 + A0(1− k0) + A1(k1 − 1))ζ1

+(k1A1 − k2A2 + A1(1− k1) + A2(k2 − 1))ζ21 + . . .+ (kr−2Ar−2

kr−1Ar−1 + Ar−2(1− kr−2) + Ar−1(kr−1 − 1))ζr−11 +

(kr−1Ar−1 − Ar + Ar−1(1− kr−1))ζr1 + (Ar − Ar+1)ζ
r+1
1 + . . . .
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For |ζ1| = 1, we have

|G(ζ1)| =
∣∣(k0A0 − k1A1 + A0(1− k0) + A1(k1 − 1))ζ1 + (k1A1 − k2A2 +

A1(1− k1) + A2(k2 − 1))ζ21 + . . .+ (kr−2Ar−2 − kr−1Ar−1 +

Ar−2(1− kr−2) + Ar−1(kr−1 − 1))ζr−11 + (kr−1Ar−1 − Ar
+Ar−1(1− kr−1))ζr1 + (Ar − Ar+1)ζ

r+1
1 + . . .

∣∣
≤ k0A0 + 2

r−1∑
m=0

|Am(km − 1)| = S(say).

Since G (ζ1) is holomorphic in |ζ1| ≤ 1, G(0) = 0 and |G (ζ1)| ≤ S for |ζ1| = 1,
therefore in view of Lemma 3, we have

|G (ζ1)| ≤
S |ζ1|

1
, for |ζ1| ≤ 1.

Now for |ζ1| < 1, we get

|F (ζ1)| ≥ |−A0 +G (ζ1)|
≥ |A0| − |G (ζ1)|

≥ |A0| − S |ζ1| > 0 if |ζ1| <
|A0|
S

= t0 (say).

This implies that |h1 (ζ1)| > 0 for |ζ1| < t0.

Similarly, it can be shown that |h2 (ζ2)| > 0 for |ζ2| < t0.

This shows that the functions h1 (ζ1) and h2 (ζ2) do not vanish respectively in A′1 =
{ζ1 ∈ X1 : |ζ1| < t0} and A′2 = {ζ2 ∈ X2 : |ζ2| < t0}.
Hence in view of Lemma 2, f(Z) = h1 (ζ1) e+h2 (ζ2) e

† do not vanish in A′1e+A′2e
† =

D (0; t0, t0). That proves the theorem.

The following example ensures the validity of Theorem 4.1.

Example 2.2 Let f(Z) = eZ − 5
6
. Then f(Z) = 1

6
+ Z + Z2

2!
+ Z3

3!
+ . . ..

Let k0 = 6 and ki = 1 for all i = 1, 2, 3, . . .. Therefore by Theorem 4.1, f(Z) does not

vanish in D (0, t0, t0) , where t0 =
1
6

1+ 5
3

= 1
16

.

Counter Example: Consider f(Z) = 5
6
−eZ . Then, f(Z) = −1

6
−Z− Z2

2!
− Z3

3!
−....

Choose k0 = 12 and ki = 1 for all i = 1, 2, 3, ... Clearly, k0A0 < k1A1 < k2A2 < ....

Therefore, all the zeros of f(Z) lie in the discus D(0; t0, t0), where t0 = 1/6
−2+11/3

= 1
10
.

Theorem 4.2. Let f(Z) =
∞∑
s=0

AsZ
s be a bicomplex entire function with real

coefficients such that

|A0| ≥ |A1| ≥ . . . ≥ |Ar−1| ≥ Ar ≥ Ar+1 . . . .

Then f(Z) does not vanish in the open discus D (0; t0, t0) where
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t0 =
|A0|

|A0| cosα + (|Ar−1|−|A0 |) sinα + 2
r−2∑
s=0

|As| sinα +Mp

,

and

Mp =
∞∑

p=r−1

|Ap − Ap+1| .

Proof.

f(Z) =
∞∑
s=0

(
Ase+ Ase

†) (ζ1e+ ζ2e
†)s

=
∞∑
s=0

(
Ase+ Ase

†) (ζs1e+ ζs2e
†)

=
∞∑
s=0

Asζ
s
1e+

∞∑
s=0

Asζ
s
2e
†

= h1 (ζ1) e+ h2 (ζ2) e
†.

Since f(Z) is analytic in any closed discus; in particular D̄(0; 1, 1) ⊂ BC, which
implies the respective functions h1 (ζ1) and h2 (ζ2) are analytic in the complex regions
X1 = {ζ1 ∈ A1 : |ζ1| ≤ 1} ⊂ C and X2 = {ζ2 ∈ A2 : |ζ2| ≤ 1} ⊂ C where A1 =
{z1 − iz2 : z1, z2 ∈ C} and A2 = {z1 + iz2 : z1, z2 ∈ C}.

Now consider the function
F (ζ1) = (ζ1 − 1)h1 (ζ1)

=− A0 + (A0 − A1) ζ1 + (A1 − A2) ζ
2
1 + . . .+ (Ar−2 − Ar−1) ζr−11 +

(Ar−1 − Ar) ζr1 + . . .

=− A0 +G (ζ1) where G (ζ1) = (A0 − A1) ζ1 + (A1 − A2) ζ
2
1 + . . .+

(Ar−2 − Ar−1) ζr−11 + (Ar−1 − Ar) ζr1 + (Ar − Ar+1) ζ
r+1
1 + . . . .

For |ζ1| = 1, we have

|G (ζ1)| = | (A0 − A1) ζ1 + (A1 − A2) ζ
2
1 + . . .+ (Ar−2 − Ar−1) ζr−11 +

(Ar−1 − Ar) ζr1 + (Ar − Ar+1) ζ
r+1
1 + . . . |

≤ |A0 − A1|+ |A1 − A2|+ . . .+ |Ar−2 − Ar−1|+ |Ar−1 − Ar|
+ |Ar − Ar+1|+ . . . .

Applying Lemma 4, it immediately yields

|G(ζ1)| ≤ |A0| cosα + (|A0|+ |Ar−1|) sinα− |Ar−1| cosα + 2
r−2∑
s=1

|As| sinα

+|Ar−1 − Ar|+ |Ar − Ar+1|+ . . .

≤ |A0| cosα + (|Ar−1| − |A0) sinα + 2
r−2∑
s=0

|As| sinα +Mp = M (say)

where Mp =
∞∑

p=r−1

|Ap − Ap+1|.
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Since G (ζ1) is holomorphic in |ζ1| ≤ 1, G(0) = 0 and |G (ζ1)| ≤ M for |ζ1| = 1,
therefore by Lemma 3, we have

|G (ζ1)| ≤
M |ζ1|

1
, for |ζ1| ≤ 1.

Now for |ζ1| < 1,we get

|F (ζ1)| ≥ |−A0 +G (ζ1)|
≥ |A0| − |G (ζ1)|

≥ |A0| −M |ζ1| > 0 if |ζ1| <
|A0|
M

= t0 (say).

This shows that |h1 (ζ1)| > 0 for |ζ1| < t0.

Likewise, we can shown that |h2 (ζ2)| > 0 for |ζ2| < t0.

This implies that the functions h1 (ζ1) and h2 (ζ2) do not vanish respectively in
A′1 = {ζ1 ∈ X1 : |ζ1| < t0} and A′2 = {ζ2 ∈ X2 : |ζ2| < t0}.

Hence in view of Lemma 2, f(Z) = h1 (ζ1) e+h2 (ζ2) e
† do not vanish in A′1e+A′2e

† =
D (0; t0, t0) . which is our desired result.

Example 2.3 Let f(Z) = eZ+Z2−3Z−4. Then f(Z) = −3−2Z+3Z
2

2!
+ Z3

3!
+ . . ..

Clearly |A0| ≥ |A1| ≥ |A2| ≥ |A3|, . . . . Hence by Theorem 4.2, f(Z) does not vanish
in D (0, t0, t0) where t0 = 3

3 cosα−sinα+
∞∑
p=1
|Ap−Ap+1|

.

Counter Example: Consider f(Z) = 4Z2 + 3Z + 1. Then, clearly |A0| <
|A1| < |A2|. Therefore, all the zeros of f(Z) lie within or on D(0; t0, t0), where t0 =

1

cosα + 11 sinα + 4
.

5. Conclusion:

This paper concludes with a summary of the key findings and contributions of the
research, highlighting the importance of bicomplex polynomials, aims to contribute to
the existing body of knowledge, stimulate further research, and foster new applications
of bicomplex polynomials in various scientific and engineering domains.
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