DOI QR코드

DOI QR Code

MIXED RADIAL-ANGULAR INTEGRABILITIES FOR HARDY TYPE OPERATORS

  • Ronghui Liu (College of Mathematics and Statistics Northwest Normal University) ;
  • Shuangping Tao (College of Mathematics and Statistics Northwest Normal University)
  • Received : 2022.10.16
  • Accepted : 2023.06.09
  • Published : 2023.09.30

Abstract

In this paper, we are devoted to studying the mixed radial-angular integrabilities for Hardy type operators. As an application, the upper and lower bounds are obtained for the fractional Hardy operator. In addition, we also establish the sharp weak-type estimate for the fractional Hardy operator.

Keywords

Acknowledgement

This work was supported by the Doctoral Scientific Research Foundation of Northwest Normal University (No. 202203101202) and the Young Teachers' Scientific Research Ability Promotion Project of Northwest Normal University (NWNU-LKQN2023-15).

References

  1. F. Cacciafesta and R. Luc'a, Singular integrals with angular integrability, Proc. Amer. Math. Soc. 144 (2016), no. 8, 3413-3418. https://doi.org/10.1090/proc/13123 
  2. M. Christ and L. Grafakos, Best constants for two nonconvolution inequalities, Proc. Amer. Math. Soc. 123 (1995), no. 6, 1687-1693. https://doi.org/10.2307/2160978 
  3. P. D'Ancona and R. Luc'a, Stein-Weiss and Caffarelli-Kohn-Nirenberg inequalities with angular integrability, J. Math. Anal. Appl. 388 (2012), no. 2, 1061-1079. https://doi.org/10.1016/j.jmaa.2011.10.051 
  4. P. D'Ancona and R. Luc'a, On the regularity set and angular integrability for the Navier-Stokes equation, Arch. Ration. Mech. Anal. 221 (2016), no. 3, 1255-1284. https://doi.org/10.1007/s00205-016-0982-2 
  5. Z. Fu, S. L. Gong, S. Z. Lu, and W. Yuan, Weighted multilinear Hardy operators and commutators, Forum Math. 27 (2015), no. 5, 2825-2851. https://doi.org/10.1515/forum-2013-0064 
  6. Z. Fu, S. Z. Lu, and S. Shi, Two characterizations of central BMO space via the commutators of Hardy operators, Forum Math. 33 (2021), no. 2, 505-529. https://doi.org/10.1515/forum-2020-0243 
  7. G. H. Hardy, Note on a theorem of Hilbert, Math. Z. 6 (1920), no. 3-4, 314-317. https://doi.org/10.1007/BF01199965 
  8. F. Liu and D. Fan, Weighted estimates for rough singular integrals with applications to angular integrability, Pacific J. Math. 301 (2019), no. 1, 267-295. https://doi.org/10.2140/pjm.2019.301.267 
  9. R. Liu, F. Liu, and H. Wu, Mixed radial-angular integrability for rough singular integrals and maximal operators, Proc. Amer. Math. Soc. 148 (2020), no. 9, 3943-3956. https://doi.org/10.1090/proc/15037 
  10. R. Liu, F. Liu, and H. Wu, On the mixed radial-angular integrability of Marcinkiewicz integrals with rough kernels, Acta Math. Sci. Ser. B (Engl. Ed.) 41 (2021), no. 1, 241-256. https://doi.org/10.1007/s10473-021-0114-4 
  11. R. Liu, S. Tao, and H. Wu, Characterizations of the mixed radial-angular central Campanato space via the commutators of Hardy type, Forum Math. 2023, (in press). 
  12. R. Liu and H. Wu, Rough singular integrals and maximal operator with radial-angular integrability, Proc. Amer. Math. Soc. 150 (2022), no. 3, 1141-1151. https://doi.org/10.1090/proc/15705 
  13. R. Liu and H. Wu, Mixed radial-angular integrability for rough maximal singular integrals and Marcinkiewicz integrals with mixed homogeneity, Math. Nachr. (2023), 1-16. https://doi.org/10.1002/mana.202100253 
  14. R. Liu and J. Zhou, Sharp estimates for the p-adic Hardy type operators on higher-dimensional product spaces, J. Inequal. Appl. 2017 (2017), Paper No. 219, 13 pp. https://doi.org/10.1186/s13660-017-1491-z 
  15. S. Z. Lu, D. Yan, and F. Zhao, Sharp bounds for Hardy type operators on higher-dimensional product spaces, J. Inequal. Appl. 2013 (2013), 148, 11 pp. https://doi.org/10.1186/1029-242X-2013-148 
  16. S. Shi, Z. Fu, and S. Z. Lu, On the compactness of commutators of Hardy operators, Pacific J. Math. 307 (2020), no. 1, 239-256. https://doi.org/10.2140/pjm.2020.307.239 
  17. E. M. Stein, Harmonic Analysis: Real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, 43, Princeton Univ. Press, Princeton, NJ, 1993. 
  18. J. Sterbenz, Angular regularity and Strichartz estimates for the wave equation, Int. Math. Res. Not. 2005 (2005), no. 4, 187-231. https://doi.org/10.1155/IMRN.2005.187 
  19. T. C. Tao, Spherically averaged endpoint Strichartz estimates for the two-dimensional Schrodinger equation, Comm. Partial Differential Equations 25 (2000), no. 7-8, 1471-1485. https://doi.org/10.1080/03605300008821556 
  20. J. Xiao, Lp and BMO bounds of weighted Hardy-Littlewood averages, J. Math. Anal. Appl. 262 (2001), no. 2, 660-666. https://doi.org/10.1006/jmaa.2001.7594