CANAL HYPERSURFACES GENERATED BY NON-NULL CURVES IN LORENTZ-MINKOWSKI 4-SPACE

Mustafa Altin, Ahmet Kazan, and Dae Won Yoon

Abstract

In the present paper, firstly we obtain the general expression of the canal hypersurfaces that are formed as the envelope of a family of pseudo hyperspheres, pseudo hyperbolic hyperspheres and null hypercones whose centers lie on a non-null curve with non-null Frenet vector fields in E_{1}^{4} and give their some geometric invariants such as unit normal vector fields, Gaussian curvatures, mean curvatures and principal curvatures. Also, we give some results about their flatness and minimality conditions and Weingarten canal hypersurfaces. Also, we obtain these characterizations for tubular hypersurfaces in E_{1}^{4} by taking constant radius function and finally, we construct some examples and visualize them with the aid of Mathematica.

1. General information and basic concepts

Canal surfaces, which are the class of surfaces formed by sweeping a sphere, have been investigated by Monge in 1850. Thus, a canal surface can be seen as the envelope of a moving sphere with varying radius, defined by the trajectory $\beta(s)$ of its centers and a radius function $r(s)$. If the radius function is constant, then the canal surface is called a tubular surface or pipe surface. Canal surfaces (especially tubular surfaces) have been applied to many fields, such as the solid and the surface modeling for CAD/CAM, construction of blending surfaces, shape re-construction and they are useful to represent various objects such as pipe, hose, rope or intestine of a body [13,28]. In this context, canal and tubular (hyper)surfaces have been studied by many mathematicians in different three, four or higher dimensional spaces. For instance, in Euclidean 3-space, some interesting and important relations about Gaussian curvature, mean curvature and second Gaussian curvature of canal surface have been found and also principal curvatures and principal curvature lines on canal surfaces have been determined in [18] and [9], respectively. In Minkowski 3 -space, some different

[^0]geometric characterizations of canal surfaces which are obtained as the envelope of a family of pseudospheres, pseudo hyperbolic spheres or lightlike cones have been obtained in [8], [26] and [28]. Furthermore, the general expressions of canal hypersurfaces in Euclidean n-space have been given and especially canal hypersurfaces in Euclidean 4-space have been studied in [17]. For further studies about canal and tubular (hyper)surfaces in different spaces, we refer to $[1,5,7-9,11,12,14-16,20,21,24-28,30,31]$, and etc.

Since the extrinsic differential geometry of submanifolds in Lorentz-Minkowski 4 -space E_{1}^{4} is of special interest in Relativity Theory, lots of studies about curves and (hyper)surfaces have been done in this space and this motivated us to construct the canal hypersurfaces in E_{1}^{4}. Now, let us recall some basic concepts for curves and hypersurfaces in E_{1}^{4}.

If $\vec{x}=\left(x_{1}, x_{2}, x_{3}, x_{4}\right), \vec{y}=\left(y_{1}, y_{2}, y_{3}, y_{4}\right)$ and $\vec{z}=\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ are three vectors in E_{1}^{4}, then the inner product and vector product are defined by

$$
\begin{equation*}
\langle\vec{x}, \vec{y}\rangle=-x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}+x_{4} y_{4} \tag{1}
\end{equation*}
$$

and

$$
\vec{x} \times \vec{y} \times \vec{z}=\operatorname{det}\left[\begin{array}{cccc}
-e_{1} & e_{2} & e_{3} & e_{4} \tag{2}\\
x_{1} & x_{2} & x_{3} & x_{4} \\
y_{1} & y_{2} & y_{3} & y_{4} \\
z_{1} & z_{2} & z_{3} & z_{4}
\end{array}\right]
$$

respectively. Here $e_{i}(i=1,2,3,4)$ are standard basis vectors.
A vector $\vec{x} \in E_{1}^{4}-\{0\}$ is called spacelike if $\langle\vec{x}, \vec{x}\rangle>0$; timelike if $\langle\vec{x}, \vec{x}\rangle<$ 0 and lightlike (null) if $\langle\vec{x}, \vec{x}\rangle=0$. In particular, the vector $\vec{x}=0$ is spacelike. Also, the norm of the vector \vec{x} is $\|\vec{x}\|=\sqrt{|\langle\vec{x}, \vec{x}\rangle|}$. A curve $\beta(s)$ in E_{1}^{4} is spacelike, timelike or lightlike (null) if all its velocity vectors $\beta^{\prime}(s)$ are spacelike, timelike or lightlike, respectively, and a non-null (i.e., timelike or spacelike) curve has unit speed if $\left\langle\beta^{\prime}, \beta^{\prime}\right\rangle=\mp 1$ [22].

If $\left\{F_{1}, F_{2}, F_{3}, F_{4}\right\}$ is the moving Frenet frame along the timelike or spacelike curve $\beta(s)$ in E_{1}^{4}, where we will call F_{1}, F_{2}, F_{3} and F_{4} are unit tangent vector field, principal normal vector field, binormal vector field and trinormal vector field, respectively, then the Frenet equations can be given according to the causal characters of non-null Frenet vector fields F_{1}, F_{2}, F_{3} and F_{4} as follows [29]:

If the curve $\beta(s)$ is timelike, i.e., $\left\langle F_{1}, F_{1}\right\rangle=-1,\left\langle F_{2}, F_{2}\right\rangle=\left\langle F_{3}, F_{3}\right\rangle=$ $\left\langle F_{4}, F_{4}\right\rangle=1$, then

$$
\left[\begin{array}{c}
F_{1}^{\prime} \tag{3}\\
F_{2}^{\prime} \\
F_{3}^{\prime} \\
F_{4}^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
0 & k_{1} & 0 & 0 \\
k_{1} & 0 & k_{2} & 0 \\
0 & -k_{2} & 0 & k_{3} \\
0 & 0 & -k_{3} & 0
\end{array}\right]\left[\begin{array}{l}
F_{1} \\
F_{2} \\
F_{3} \\
F_{4}
\end{array}\right] ;
$$

if the curve $\beta(s)$ is spacelike with timelike principal normal vector field F_{2}, i.e., $\left\langle F_{2}, F_{2}\right\rangle=-1,\left\langle F_{1}, F_{1}\right\rangle=\left\langle F_{3}, F_{3}\right\rangle=\left\langle F_{4}, F_{4}\right\rangle=1$, then

$$
\left[\begin{array}{c}
F_{1}^{\prime} \tag{4}\\
F_{2}^{\prime} \\
F_{3}^{\prime} \\
F_{4}^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
0 & k_{1} & 0 & 0 \\
k_{1} & 0 & k_{2} & 0 \\
0 & k_{2} & 0 & k_{3} \\
0 & 0 & -k_{3} & 0
\end{array}\right]\left[\begin{array}{c}
F_{1} \\
F_{2} \\
F_{3} \\
F_{4}
\end{array}\right] ;
$$

if the curve $\beta(s)$ is spacelike with timelike binormal vector field F_{3}, i.e., $\left\langle F_{3}, F_{3}\right\rangle$ $=-1,\left\langle F_{1}, F_{1}\right\rangle=\left\langle F_{2}, F_{2}\right\rangle=\left\langle F_{4}, F_{4}\right\rangle=1$, then

$$
\left[\begin{array}{l}
F_{1}^{\prime} \tag{5}\\
F_{2}^{\prime} \\
F_{3}^{\prime} \\
F_{4}^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
0 & k_{1} & 0 & 0 \\
-k_{1} & 0 & k_{2} & 0 \\
0 & k_{2} & 0 & k_{3} \\
0 & 0 & k_{3} & 0
\end{array}\right]\left[\begin{array}{c}
F_{1} \\
F_{2} \\
F_{3} \\
F_{4}
\end{array}\right]
$$

if the curve $\beta(s)$ is spacelike with timelike trinormal vector field F_{4}, i.e., $\left\langle F_{4}, F_{4}\right\rangle=-1,\left\langle F_{1}, F_{1}\right\rangle=\left\langle F_{2}, F_{2}\right\rangle=\left\langle F_{3}, F_{3}\right\rangle=1$, then

$$
\left[\begin{array}{l}
F_{1}^{\prime} \tag{6}\\
F_{2}^{\prime} \\
F_{3}^{\prime} \\
F_{4}^{\prime}
\end{array}\right]=\left[\begin{array}{cccc}
0 & k_{1} & 0 & 0 \\
-k_{1} & 0 & k_{2} & 0 \\
0 & -k_{2} & 0 & k_{3} \\
0 & 0 & k_{3} & 0
\end{array}\right]\left[\begin{array}{l}
F_{1} \\
F_{2} \\
F_{3} \\
F_{4}
\end{array}\right],
$$

where k_{1}, k_{2}, k_{3} are the first, second and third curvatures of the non-null curve $\beta(s)$.

Furthermore, if p is a fixed point in E_{1}^{4} and r is a positive constant, then the pseudo-Riemannian hypersphere is defined by

$$
S_{1}^{3}(p, r)=\left\{x \in E_{1}^{4}:\langle x-p, x-p\rangle=r^{2}\right\}
$$

the pseudo-Riemannian hyperbolic space is defined by

$$
H_{0}^{3}(p, r)=\left\{x \in E_{1}^{4}:\langle x-p, x-p\rangle=-r^{2}\right\}
$$

the pseudo-Riemannian null hypercone is defined by

$$
Q_{1}^{3}=\left\{x \in E_{1}^{4}:\langle x-p, x-p\rangle=0\right\} .
$$

In the present study, we construct the canal hypersurfaces in E_{1}^{4} as the envelope of a family of pseudo hyperspheres, pseudo hyperbolic hyperspheres or null hypercones whose centers lie on a non-null curve with non-null Frenet vector fields.

On the other hand, the differential geometry of different types of (hyper)surfaces in 4-dimensional spaces has been a popular topic for geometers, recently ($[2-4,6,17,19]$, and etc.). In this context, let Γ be a hypersurface in E_{1}^{4} given by $\Gamma: U \subset E^{3} \rightarrow E_{1}^{4},\left(u_{1}, u_{2}, u_{3}\right) \rightarrow \Gamma\left(u_{1}, u_{2}, u_{3}\right)=\left(\Gamma_{1}\left(u_{1}, u_{2}, u_{3}\right), \Gamma_{2}\left(u_{1}, u_{2}, u_{3}\right)\right.$, $\left.\Gamma_{3}\left(u_{1}, u_{2}, u_{3}\right), \Gamma_{4}\left(u_{1}, u_{2}, u_{3}\right)\right)$. Then the Gauss map (i.e., the unit normal vector field), the matrix forms of the first and second fundamental forms are

$$
\begin{equation*}
N_{\Gamma}=\frac{\Gamma_{u_{1}} \times \Gamma_{u_{2}} \times \Gamma_{u_{3}}}{\left\|\Gamma_{u_{1}} \times \Gamma_{u_{2}} \times \Gamma_{u_{3}}\right\|} \tag{7}
\end{equation*}
$$

$$
\left[g_{i j}\right]=\left[\begin{array}{lll}
g_{11} & g_{12} & g_{13} \tag{8}\\
g_{21} & g_{22} & g_{23} \\
g_{31} & g_{32} & g_{33}
\end{array}\right]
$$

and

$$
\left[h_{i j}\right]=\left[\begin{array}{lll}
h_{11} & h_{12} & h_{13} \tag{9}\\
h_{21} & h_{22} & h_{23} \\
h_{31} & h_{32} & h_{33}
\end{array}\right]
$$

respectively. Here $g_{i j}=\left\langle\Gamma_{u_{i}}, \Gamma_{u_{j}}\right\rangle, h_{i j}=\left\langle\Gamma_{u_{i} u_{j}}, N_{\Gamma}\right\rangle, \Gamma_{u_{i}}=\frac{\partial \Gamma}{\partial u_{i}}, \Gamma_{u_{i} u_{j}}=$ $\frac{\partial^{2} \Gamma}{\partial u_{i} u_{j}}, i, j \in\{1,2,3\}$.

Also, the matrix of shape operator of the hypersurface Γ is

$$
\begin{equation*}
S=\left[g_{i j}\right]^{-1} \cdot\left[h_{i j}\right] \tag{10}
\end{equation*}
$$

where $\left[g_{i j}\right]^{-1}$ is the inverse matrix of $\left[g_{i j}\right]$.
With the aid of (8)-(10), the Gaussian curvature and mean curvature of a hypersurface in E_{1}^{4} are given by

$$
\begin{equation*}
K=\varepsilon \frac{\operatorname{det}\left[h_{i j}\right]}{\operatorname{det}\left[g_{i j}\right]} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
3 \varepsilon H=\operatorname{tr}(S), \tag{12}
\end{equation*}
$$

respectively. Here, $\varepsilon=\left\langle N_{\Gamma}, N_{\Gamma}\right\rangle$. We say that a hypersurface is flat or minimal, if it has zero Gaussian or zero mean curvature, respectively. For more details about hypersurfaces in E_{1}^{4}, we refer to [10,23], and etc.

In Section 2, we obtain the general expression of the canal hypersurfaces that are formed as the envelope of a family of pseudo hyperspheres, pseudo hyperbolic hyperspheres and null hypercones whose centers lie on a non-null curve with non-null Frenet vector fields in E_{1}^{4} and give some characterizations for them. In Section 3, we obtain these results for tubular hypersurfaces by taking constant radius function and in Section 4, we construct some examples and visualize them with the aid of Mathematica.

2. Canal hypersurfaces generated by non-null curves

In this section, firstly we construct the canal hypersurfaces that are formed as the envelope of a family of pseudo hyperspheres, pseudo hyperbolic hyperspheres and null hypercones whose centers lie on a non-null curve with non-null Frenet vector fields in E_{1}^{4}. After that, we obtain some important geometric invariants such as unit normal vector fields, Gaussian curvatures, mean curvatures and principal curvatures of these canal hypersurfaces in general form. Also, we give some results for flat, minimal and Weingarten canal hypersurfaces in E_{1}^{4}.

2.1. Construction of canal hypersurfaces

Here, we prove a theorem which gives us the general parametric expressions of 11 different types of canal hypersurfaces obtained by pseudo hyperspheres, pseudo hyperbolic hyperspheres and null hypercones whose centers lie on a non-null curve with non-null Frenet vector fields in E_{1}^{4}. Also, we write the parametric expressions of these canal hypersurfaces explicitly.

Theorem 2.1. The canal hypersurfaces that are formed as the envelope of a family of pseudo hyperspheres or pseudo hyperbolic hyperspheres whose centers lie on a non-null curve $\beta(s)$ with non-null Frenet vector fields F_{i} in E_{1}^{4} can be parametrized by

$$
\begin{align*}
\mathfrak{C}^{\{j ; \lambda\}}(s, t, w)= & \beta(s)-\lambda \varepsilon_{1} r(s) r^{\prime}(s) F_{1}(s) \tag{13}\\
& \mp r(s) \sqrt{r^{\prime}(s)^{2}-\lambda \varepsilon_{1}}\left(\sum_{i=2}^{4} \mathfrak{a}_{j i}(s, t, w) F_{i}(s)\right),
\end{align*}
$$

where
(i) $g\left(F_{j}, F_{j}\right)=-1=\varepsilon_{j}$ and for $i \neq j, g\left(F_{i}, F_{i}\right)=1=\varepsilon_{i}, i, j \in\{1,2,3,4\}$;
(ii)

$$
\left\{\begin{array}{l}
\mathfrak{a}_{12}(s, t, w)=\cos t \cos w, \\
\mathfrak{a}_{13}(s, t, w)=\sin t \cos w, \\
\mathfrak{a}_{14}(s, t, w)=\sin w, \\
\mathfrak{a}_{22}(s, t, w)=\mathfrak{a}_{33}(s, t, w)=\mathfrak{a}_{44}(s, t, w)=\cosh t \cosh w, \\
\mathfrak{a}_{23}(s, t, w)=\mathfrak{a}_{34}(s, t, w)=\mathfrak{a}_{42}(s, t, w)=\sinh w, \\
\mathfrak{a}_{24}(s, t, w)=\mathfrak{a}_{32}(s, t, w)=\mathfrak{a}_{43}(s, t, w)=\sinh t \cosh w,
\end{array}\right.
$$

also, we suppose $r^{\prime}(s)^{2}>\lambda \varepsilon_{1}$ and if the canal hypersurface is foliated by pseudo hyperspheres or pseudo hyperbolic hyperspheres, then $\lambda=1$ or $\lambda=-1$, respectively.

Furthermore, the canal hypersurfaces that are formed as the envelope of a family of null hypercones whose centers lie on a non-null curve with non-null Frenet vector fields F_{i} in E_{1}^{4} can be parametrized by

$$
\begin{equation*}
\mathfrak{C}^{\{j ; 0\}}(s, t, w)=\beta(s) \mp\left(\sum_{i=2}^{4} a_{i}(s, t, w) F_{i}(s)\right), \quad j=2,3,4 \tag{14}
\end{equation*}
$$

where $a_{i}(s, t, w)$ are arbitrary functions satisfying

$$
\sum_{i=2}^{4} \varepsilon_{i} a_{i}^{2}(s, t, w)=0
$$

It is obvious from this expression that, the canal hypersurface $\mathfrak{C}^{\{1 ; 0\}}$ cannot be defined.

Here, the center curve $\beta(s)$ which generates the canal hypersurface is timelike or spacelike if $j=1$ or $j=2,3,4$, respectively.

Proof. Let $\beta: I \subseteq \mathbb{R} \rightarrow E_{1}^{4}$ be a spacelike or timelike center curve parametrized by arc-length with non-zero curvature and $g\left(F_{j}, F_{j}\right)=\varepsilon_{j}=-1$, where $F_{1}(s)$, $F_{2}(s), F_{3}(s), F_{4}(s)$ are unit tangent, principal normal, binormal and trinormal vectors of $\beta(s)$, respectively. Then, the parametrization of the envelope of pseudo hyperspheres $(\lambda=1)$ (resp. pseudo hyperbolic hyperspheres $(\lambda=-1)$
or null hypercones $(\lambda=0)$) defining the canal hypersurfaces $\mathfrak{C}^{\{j ; \lambda\}}$ in E_{1}^{4} can be given by

$$
\begin{align*}
\mathfrak{C}^{\{j ; \lambda\}}(s, t, w)-\beta(s)= & a_{1}(s, t, w) F_{1}(s)+a_{2}(s, t, w) F_{2}(s) \tag{15}\\
& +a_{3}(s, t, w) F_{3}(s)+a_{4}(s, t, w) F_{4}(s)
\end{align*}
$$

where $a_{i}(s, t, w)$ are differentiable functions of s, t, w on the interval I. Furthermore, since $\mathfrak{C}^{\{j ; \lambda\}}(s, t, w)$ lies on the pseudo hyperspheres (resp. pseudo hyperbolic hyperspheres or null hypercones), we have

$$
\begin{equation*}
g\left(\mathfrak{C}^{\{j ; \lambda\}}(s, t, w)-\beta(s), \mathfrak{C}^{\{j ; \lambda\}}(s, t, w)-\beta(s)\right)=\lambda r^{2}(s) \tag{16}
\end{equation*}
$$

which leads to from (15) that

$$
\begin{equation*}
\varepsilon_{1} a_{1}^{2}+\varepsilon_{2} a_{2}^{2}+\varepsilon_{3} a_{3}^{2}+\varepsilon_{4} a_{4}^{2}=\lambda r^{2} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon_{1} a_{1} a_{1_{s}}+\varepsilon_{2} a_{2} a_{2_{s}}+\varepsilon_{3} a_{3} a_{3_{s}}+\varepsilon_{4} a_{4} a_{4_{s}}=\lambda r r_{s} \tag{18}
\end{equation*}
$$

where $r(s)$ is the radius function; $r=r(s), r_{s}=\frac{d r(s)}{d s}, a_{i}=a_{i}(s, t, w), a_{i_{s}}=$ $\frac{\partial a_{i}(s, t, w)}{\partial s}$.

Also from (3)-(6), the non-null Frenet vectors $F_{i}(s), i \in\{1,2,3,4\}$, of the spacelike or timelike curve $\beta(s)$ satisfy the relations

$$
\left\{\begin{array}{l}
F_{1}^{\prime}(s)=k_{1}(s) F_{2}(s) \tag{19}\\
F_{2}^{\prime}(s)=\varepsilon_{3} \varepsilon_{4} k_{1}(s) F_{1}(s)+k_{2}(s) F_{3}(s) \\
F_{3}^{\prime}(s)=\varepsilon_{1} \varepsilon_{4} k_{2}(s) F_{2}(s)+k_{3}(s) F_{4}(s) \\
F_{4}^{\prime}(s)=\varepsilon_{1} \varepsilon_{2} k_{3}(s) F_{3}(s)
\end{array}\right.
$$

Here, $\beta(s)$ is a timelike curve if $\varepsilon_{1}=-1$. Also, $\beta(s)$ is a spacelike curve with timelike principal normal F_{2} or timelike binormal F_{3} or timelike trinormal F_{4} if $\varepsilon_{2}=-1$ or $\varepsilon_{3}=-1$ or $\varepsilon_{4}=-1$, respectively, where $g\left(F_{i}, F_{i}\right)=\varepsilon_{i}$, $i \in\{1,2,3,4\}$.

So, differentiating (15) with respect to s and using the Frenet formula (19), we get

$$
\begin{align*}
\mathfrak{C}_{s}^{\{j ; \lambda\}}= & \left(1+\varepsilon_{3} \varepsilon_{4} a_{2} k_{1}+a_{1_{s}}\right) F_{1}+\left(a_{1} k_{1}+\varepsilon_{1} \varepsilon_{4} a_{3} k_{2}+a_{2_{s}}\right) F_{2} \tag{20}\\
& +\left(a_{2} k_{2}+\varepsilon_{1} \varepsilon_{2} a_{4} k_{3}+a_{3_{s}}\right) F_{3}+\left(a_{3} k_{3}+a_{4_{s}}\right) F_{4}
\end{align*}
$$

where $\mathfrak{C}_{s}^{\{j ; \lambda\}}=\frac{\partial \mathfrak{C}_{s}^{\{j ; \lambda\}}(s, t, w)}{\partial s}$. Furthermore, $\mathfrak{C}^{\{j ; \lambda\}}(s, t, w)-\beta(s)$ is a normal vector to the canal hypersurfaces, which implies that

$$
\begin{equation*}
g\left(\mathfrak{C}^{\{j ; \lambda\}}(s, t, w)-\beta(s), \mathfrak{C}_{s}^{\{j ; \lambda\}}(s, t, w)\right)=0 \tag{21}
\end{equation*}
$$

and so, from (15), (20) and (21) we have

$$
\begin{align*}
& \varepsilon_{1} a_{1}\left(1+\varepsilon_{3} \varepsilon_{4} a_{2} k_{1}+a_{1_{s}}\right)+\varepsilon_{2} a_{2}\left(a_{1} k_{1}+\varepsilon_{1} \varepsilon_{4} a_{3} k_{2}+a_{2 s}\right) \tag{22}\\
& +\varepsilon_{3} a_{3}\left(a_{2} k_{2}+\varepsilon_{1} \varepsilon_{2} a_{4} k_{3}+a_{3_{s}}\right)+\varepsilon_{4} a_{4}\left(a_{3} k_{3}+a_{4_{s}}\right)=0
\end{align*}
$$

Using (18) in (22), we get

$$
\begin{equation*}
\varepsilon_{1} a_{1}+\varepsilon_{1} a_{1} a_{1_{s}}+\varepsilon_{2} a_{2} a_{2_{s}}+\varepsilon_{3} a_{3} a_{3_{s}}+\varepsilon_{4} a_{4} a_{4_{s}}=0 \tag{23}
\end{equation*}
$$

and thus, from (18) and the definition of ε_{i}, we obtain

$$
\begin{equation*}
a_{1}=-\varepsilon_{1} \lambda r r_{s} \tag{24}
\end{equation*}
$$

Hence, using (24) in (17), we reach that

$$
\begin{equation*}
\varepsilon_{1}\left(\varepsilon_{2} a_{2}^{2}+\varepsilon_{3} a_{3}^{2}+\varepsilon_{4} a_{4}^{2}\right)=-r^{2}\left(-\varepsilon_{1} \lambda+\lambda^{2} r_{s}^{2}\right) \tag{25}
\end{equation*}
$$

Here from (25);
(i) if $\lambda=1$ or $\lambda=-1$, then the canal hypersurfaces $\mathfrak{C}^{\{j ; \lambda\}}$ that are formed as the envelope of a family of pseudo hyperspheres or pseudo hyperbolic hyperspheres whose centers lie on a non-null curve in E_{1}^{4} can be parametrized by (13);
(ii) if $\lambda=0$, then the canal hypersurfaces $\mathfrak{C}^{\{j ; 0\}}$ that are formed as the envelope of a family of null hypercones whose centers lie on a non-null curve in E_{1}^{4} can be parametrized by (14)
and this completes the proof.
Thus, the explicit parametric expressions of the canal hypersurfaces $\mathfrak{C}^{\{j ; \lambda\}}(s, t, w)$ and $\mathfrak{C}^{\{j ; 0\}}(s, t, w)$ from Theorem 2.1 are as follows:

$$
\left\{\begin{array}{l}
\mathfrak{C}^{\{1 ; 1\}}=\beta+r r^{\prime} F_{1} \mp r \sqrt{r^{\prime 2}+1}\left(\cos t \cos w F_{2}+\sin t \cos w F_{3}+\sin w F_{4}\right), \\
\mathfrak{C}^{\{1 ;-1\}}=\beta-r r^{\prime} F_{1} \mp r \sqrt{r^{\prime 2}-1}\left(\cos t \cos w F_{2}+\sin t \cos w F_{3}+\sin w F_{4}\right), \\
\mathfrak{C}^{\{2 ; 1\}}=\beta-r r^{\prime} F_{1} \mp r \sqrt{r^{\prime 2}-1}\left(\cosh t \cosh w F_{2}+\sinh w F_{3}+\sinh t \cosh w F_{4}\right), \\
\mathfrak{C}^{\{2 ;-1\}}=\beta+r r^{\prime} F_{1} \mp r \sqrt{r^{\prime 2}+1}\left(\cosh t \cosh w F_{2}+\sinh w F_{3}+\sinh t \cosh w F_{4}\right), \\
\mathfrak{C}^{\{3 ; 1\}}=\beta-r r^{\prime} F_{1} \mp r \sqrt{r^{\prime 2}-1}\left(\sinh t \cosh w F_{2}+\cosh t \cosh w F_{3}+\sinh w F_{4}\right), \tag{26}\\
\mathfrak{C}^{\{3 ;-1\}}=\beta+r r^{\prime} F_{1} \mp r \sqrt{r^{\prime 2}+1}\left(\sinh t \cosh w F_{2}+\cosh t \cosh w F_{3}+\sinh w F_{4}\right), \\
\mathfrak{C}^{\{4 ; 1\}}=\beta-r r^{\prime} F_{1} \mp r \sqrt{r^{\prime 2}-1}\left(\sinh w F_{2}+\sinh t \cosh w F_{3}+\cosh t \cosh w F_{4}\right), \\
\mathfrak{C}^{\{4 ;-1\}}=\beta+r r^{\prime} F_{1} \mp r \sqrt{r^{\prime 2}+1}\left(\sinh w F_{2}+\sinh t \cosh w F_{3}+\cosh t \cosh w F_{4}\right)
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\mathfrak{C}^{\{2 ; 0\}}=\beta \mp \sqrt{a_{3}^{2}+a_{4}^{2}} F_{2}+a_{3} F_{3}+a_{4} F_{4} \tag{27}\\
\mathfrak{C}^{\{3 ; 0\}}=\beta+a_{2} F_{2} \mp \sqrt{a_{2}^{2}+a_{4}^{2}} F_{3}+a_{4} F_{4} \\
\mathfrak{C}^{\{4 ; 0\}}=\beta+a_{2} F_{2}+a_{3} F_{3} \mp \sqrt{a_{2}^{2}+a_{3}^{2}} F_{4} .
\end{array}\right.
$$

Remark 2.2. As one can see in Theorem 2.1, we deal with the canal hypersurfaces satisfying $r^{\prime}(s)^{2}>\lambda \varepsilon_{1}$. If we assume that $r^{\prime}(s)^{2}<\lambda \varepsilon_{1}$, then the canal hypersurfaces $\mathfrak{C}^{\{2 ; 1\}}, \mathfrak{C}^{\{3 ; 1\}}$ and $\mathfrak{C}^{\{4 ; 1\}}$ can be rewritten as
(28) $\left\{\begin{array}{l}\mathfrak{C}^{\{2 ; 1\}}=\beta-r r^{\prime} F_{1} \mp r \sqrt{1-r^{\prime 2}}\left(\cosh t \sinh w F_{2}+\cosh w F_{3}+\sinh t \sinh w F_{4}\right), \\ \mathfrak{C}^{\{3 ; 1\}}=\beta-r r^{\prime} F_{1} \mp r \sqrt{1-r^{\prime 2}}\left(\sinh t \sinh w F_{2}+\cosh t \sinh w F_{3}+\cosh w F_{4}\right), \\ \mathfrak{C}^{\{4 ; 1\}}=\beta-r r^{\prime} F_{1} \mp r \sqrt{1-r^{\prime 2}}\left(\cosh w F_{2}+\sinh t \sinh w F_{3}+\cosh t \sinh w F_{4}\right) .\end{array}\right.$

2.2. Curvatures of canal hypersurfaces

At the beginning of this subsection, we must note that we'll obtain the following results by taking $r^{\prime}(s)^{2}>\lambda \varepsilon_{1}$ and " \mp " which is in (13) as " + ". Similar characterizations can be obtained by taking $r^{\prime}(s)^{2}>\lambda \varepsilon_{1}$ and " \mp " as "-" (or $r^{\prime}(s)^{2}<\lambda \varepsilon_{1}$ and "+" or "-").

Here, we'll obtain some important geometric invariants of these canal hypersurfaces by proving the following theorem:
Theorem 2.3. The unit normal vector fields $N^{\{j ; \lambda\}}$, Gaussian curvatures $K^{\{j ; \lambda\}}$, mean curvatures $H^{\{j ; \lambda\}}$ and principal curvatures $\mu_{i}^{\{j ; \lambda\}}, i \in\{1,2,3\}$, of the canal hypersurfaces $\mathfrak{C}^{\{j ; \lambda\}}(s, t, w)$, given by (13) in E_{1}^{4}, are

$$
\begin{align*}
& N^{\{j, \lambda\}}=-\varepsilon_{3} \varepsilon_{4} \lambda^{j}\left(-\lambda \varepsilon_{1} r^{\prime} F_{1}(s)+\sqrt{r^{\prime 2}-\lambda \varepsilon_{1}}\left(\sum_{i=2}^{4} \mathfrak{a}_{j i}(s, t, w) F_{i}(s)\right)\right), \tag{29}\\
& K^{\{j, \lambda\}}=\frac{\varepsilon_{3} \varepsilon_{4} \lambda^{j+1} P}{r^{2} Q}, \tag{30}\\
& H^{\{j, \lambda\}}=\frac{\varepsilon_{3} \varepsilon_{4} \lambda^{j+1}(2 Q+r P)}{3 r Q}, \tag{31}\\
& \mu_{1}^{\{j, \lambda\}}=\mu_{2}^{\{j, \lambda\}}=\frac{\varepsilon_{3} \varepsilon_{4} \lambda^{j}}{r}, \quad \mu_{3}^{\{j, \lambda\}}=\frac{\varepsilon_{3} \varepsilon_{4} \lambda^{j} P}{Q},
\end{align*}
$$

where

$$
\begin{aligned}
P= & r k_{1}^{2} f_{j}^{2}\left(r^{\prime 2}-\lambda \varepsilon_{1}\right)+r^{\prime \prime}\left(r^{\prime 2}-\lambda \varepsilon_{1}+r r^{\prime \prime}\right) \\
& +\varepsilon_{2} \lambda k_{1} f_{j} \sqrt{r^{\prime 2}-\lambda \varepsilon_{1}}{ }^{\prime \prime}\left(r^{\prime 2}-\lambda \varepsilon_{1}+2 r r^{\prime \prime}\right), \\
Q= & \left(r^{\prime 2}-\lambda \varepsilon_{1}+\varepsilon_{2} \lambda r k_{1} f_{j} \sqrt{r^{\prime 2}-\lambda \varepsilon_{1}}+r r^{\prime \prime}\right)^{2}
\end{aligned}
$$

and

$$
f_{j}=\left\{\begin{array}{l}
\cos t \cos w ; \text { if } j=1, \tag{33}\\
\cosh t \cosh w ; \text { if } j=2 \\
\sinh t \cosh w ; \text { if } j=3 \\
\sinh w ; \text { if } j=4
\end{array}\right.
$$

Proof. Firstly, with the aid of the first derivatives of (26) according to s, t and w, we obtain the normals of the canal hypersurfaces $\mathfrak{C}^{\{j ; \lambda\}}(s, t, w)$ from (7) as

$$
\left\{\begin{array}{l}
N^{\{1 ; 1\}}=-r^{\prime}(s) F_{1}(s)-\sqrt{r^{\prime}(s)^{2}+1}\left(\cos t \cos w F_{2}+\sin t \cos w F_{3}+\sin w F_{4}\right), \tag{34}\\
N^{\{1 ;-1\}}=-r^{\prime}(s) F_{1}(s)+\sqrt{r^{\prime}(s)^{2}-1}\left(\cos t \cos w F_{2}+\sin t \cos w F_{3}+\sin w F_{4}\right), \\
N^{\{2 ; 1\}}=r^{\prime}(s) F_{1}(s)-\sqrt{r^{\prime}(s)^{2}-1}\left(\cosh t \cosh w F_{2}+\sinh w F_{3}+\sinh t \cosh w F_{4}\right), \\
N^{\{2 ;-1\}}=-r^{\prime}(s) F_{1}(s)-\sqrt{r^{\prime}(s)^{2}+1}\left(\cosh t \cosh w F_{2}+\sinh w F_{3}+\sinh t \cosh w F_{4}\right), \\
N^{\{3 ; 1\}}=-r^{\prime}(s) F_{1}(s)+\sqrt{r^{\prime}(s)^{2}-1}\left(\sinh t \cosh w F_{2}+\cosh t \cosh w F_{3}+\sinh w F_{4}\right), \\
N^{\{3 ;-1\}}=-r^{\prime}(s) F_{1}(s)-\sqrt{r^{\prime}(s)^{2}+1}\left(\sinh t \cosh w F_{2}+\cosh t \cosh w F_{3}+\sinh w F_{4}\right), \\
N^{\{4 ; 1\}}=-r^{\prime}(s) F_{1}(s)+\sqrt{r^{\prime}(s)^{2}-1}\left(\sinh w F_{2}+\sinh t \cosh w F_{3}+\cosh t \cosh w F_{4}\right), \\
N^{\{4 ;-1\}}=r^{\prime}(s) F_{1}(s)+\sqrt{r^{\prime}(s)^{2}+1}\left(\sinh w F_{2}+\sinh t \cosh w F_{3}+\cosh t \cosh w F_{4}\right)
\end{array}\right.
$$

and so, we can write (29).

Now, the coefficients of the first and second fundamental forms of the canal hypersurfaces $\mathfrak{C}^{\{1 ; \lambda\}}$ that are formed as the envelope of a family of pseudo hyperspheres or pseudo hyperbolic hyperspheres whose centers lie on a timelike curve in E_{1}^{4} are

$$
\left\{\begin{align*}
g_{11}^{\{1 ; \lambda\}}= & \frac{r^{\prime 2}+\lambda}{4}\left(r^{2}\binom{4 k_{2}^{2} \cos ^{2} w-4 k_{2} k_{3} \cos t \sin 2 w}{-\left(2 \cos 2 t \cos ^{2} w+\cos 2 w-3\right) k_{3}^{2}}-4 \lambda\right.
\end{aligned}\right), ~ \begin{aligned}
& \\
&-\lambda r^{2} k_{1}^{2}\left(\cos ^{2} t \cos ^{2} w+\left(\lambda \cos ^{2} t \cos ^{2} w-\lambda\right) r^{\prime 2}\right)-2 \lambda r r^{\prime \prime}-\frac{\lambda r^{2} r^{\prime \prime 2}}{\lambda+r^{\prime 2}} \\
&-\frac{2 \lambda k_{1} r \cos w}{\sqrt{\lambda+r^{\prime 2}}\left(\left(\lambda k_{2} r r^{\prime} \cos t \sin t\right)\left(r^{\prime 2}+\lambda\right)+\lambda r r^{\prime \prime} \cos t\right),} \tag{35}\\
& g_{12}^{\{1 ; \lambda\}}= g_{21}^{\{1 ; \lambda\}}=r^{2}\binom{k_{2}\left(r^{\prime 2}+\lambda\right) \cos w-\lambda k_{1} r^{\prime} \sqrt{r^{\prime 2}+\lambda} \sin t}{-k_{3}\left(r^{\prime 2}+\lambda\right) \cos t \sin w} \cos w, \\
& g_{13}^{\{1 ; \lambda\}}= g_{31}^{\{1 ; \lambda\}}=r^{2}\left(k_{3}\left(r^{\prime 2}+\lambda\right) \sin t-\lambda k_{1} r^{\prime} \sqrt{r^{\prime 2}+\lambda} \cos t \sin w\right), \\
& g_{22}^{\{1, \lambda\}}=\left(r^{\prime 2}+\lambda\right) r^{2} \cos ^{2} w, g_{23}^{\{1 ; \lambda\}}=g_{32}^{\{1 ; \lambda\}}=0, g_{33}^{\{1 ; \lambda\}}=\left(r^{\prime 2}+\lambda\right) r^{2} ;
\end{align*}
$$

$$
\left\{\begin{align*}
h_{11}^{\{1 ; \lambda\}} & =\frac{\lambda r\left(r^{\prime 2}+\lambda\right)}{4}\binom{4 k_{2}^{2} \cos ^{2} w-\left(\cos (2 t)+2 \cos ^{2} t \cos (2 w)-3\right) k_{3}^{2}}{-4 k_{2} k_{3} \cos t \sin (2 w)} \tag{36}\\
& -\lambda k_{1}^{2} r\left(\lambda \cos ^{2} t \cos ^{2} w+\left(\cos ^{2} t \cos ^{2} w-1\right) r^{\prime 2}\right)-r^{\prime \prime}-\frac{r r^{\prime \prime 2}}{\lambda+r^{\prime 2}}
\end{aligned}\right), ~ \begin{aligned}
& -\frac{\lambda k_{1} \cos w}{\sqrt{\lambda+r^{\prime 2}}}\left(\left(\cos t+2 \lambda k_{2} r r^{\prime} \sin t\right)\left(r^{\prime 2}+\lambda\right)+2 r r^{\prime \prime} \cos t\right) \\
h_{12}^{\{1 ; \lambda\}}= & h_{21}^{\{1 ; \lambda\}}=\lambda r\binom{\cos w k_{2}\left(r^{\prime 2}+\lambda\right)-\lambda k_{1} \sin t r^{\prime} \sqrt{r^{\prime 2}+\lambda}}{-\cos t k_{3} \sin w\left(r^{\prime 2}+\lambda\right)} \cos w \\
h_{13}^{\{1 ; \lambda\}}= & h_{31}^{\{1 ; \lambda\}}=\lambda r\left(k_{3}\left(r^{\prime 2}+\lambda\right) \sin t-\lambda k_{1} r^{\prime} \sqrt{r^{\prime 2}+\lambda} \cos t \sin w\right) \\
h_{22}^{\{1 ; \lambda\}}= & \lambda r\left(r^{\prime 2}+\lambda\right) \cos ^{2} w, \quad h_{23}^{\{1 ; \lambda\}}=h_{32}^{\{1 ; \lambda\}}=0, \quad h_{33}^{\{1 ; \lambda\}}=\lambda r\left(r^{\prime 2}+\lambda\right)
\end{align*}
$$

the coefficients of the first and second fundamental forms of the canal hypersurfaces $\mathfrak{C}\{2 ; \lambda\}$ that are formed as the envelope of a family of pseudo hyperspheres or pseudo hyperbolic hyperspheres whose centers lie on a spacelike curve with the timelike principal normal vector in E_{1}^{4} are

$$
\begin{align*}
& \left(g_{11}^{\{2 ; \lambda\}}=\frac{1}{4}\left(4-4 \lambda r^{\prime 2}+r^{2}\left(r^{\prime 2}-\lambda\right)\left(\begin{array}{l}
\left(\cosh 2 t+2 \cosh ^{2} t \cosh 2 w-3\right) k_{3}^{2} \\
+\left(\cosh 2 t+2 \cosh 2 w \sinh ^{2} t+3\right) k_{2}^{2} \\
-4 k_{2} k_{3} \cosh ^{2} w \sinh 2 t
\end{array}\right)\right)\right. \\
& +r^{2} k_{1}^{2}\left(\left(\cosh ^{2} t \cosh ^{2} w-1\right) r^{\prime 2}-\lambda \cosh ^{2} t \cosh ^{2} w\right)-2 \lambda r r^{\prime \prime}-\frac{\lambda r^{2} r^{\prime \prime \prime}}{r^{\prime 2}-\lambda} \\
& +\frac{2 k_{1} r}{\sqrt{r^{\prime 2}-\lambda}}\left(\left(\cosh t \cosh w+\lambda k_{2} r r^{\prime} \sinh w\right)\left(r^{\prime 2}-\lambda\right)+r r^{\prime \prime} \cosh t \cosh w\right), \tag{37}\\
& g_{12}^{\{2 ; \lambda\}}=g_{21}^{\{2 ; \lambda\}}=r^{2}\binom{\lambda\left(k_{1} r^{\prime} \sqrt{r^{\prime 2}-\lambda}-k_{2} \lambda\left(r^{\prime 2}-\lambda\right) \sinh w\right) \sinh t}{+k_{3}\left(r^{\prime 2}-\lambda\right) \cosh t \sinh w} \cosh w, \\
& \left(\begin{array}{l}
g_{13}^{\{2 ; \lambda\}}=g_{31}^{\{2 ; \lambda\}}=r^{2}\binom{\lambda k_{1} r^{\prime} \sqrt{r^{\prime 2}-\lambda} \cosh t \sinh w}{+k_{2}\left(r^{\prime 2}-\lambda\right) \cosh t+k_{3}\left(r^{\prime 2}-\lambda\right) \sinh t}, \\
g_{22}^{\{2 ; \lambda\}}=\left(r^{\prime 2}-\lambda\right) r^{2} \cosh ^{2} w, \quad g_{23}^{\{2 ; \lambda\}}=g_{32}^{\{2 ; \lambda\}}=0, g_{33}^{\{2 ; \lambda\}}=r^{2}\left(r^{\prime 2}-\lambda\right) ;
\end{array}\right.
\end{align*}
$$

the coefficients of the first and second fundamental forms of the canal hypersurfaces $\mathfrak{C}\{3 ; \lambda\}$ that are formed as the envelope of a family of pseudo hyperspheres or pseudo hyperbolic hyperspheres whose centers lie on a spacelike center curve with the timelike binormal vector in E_{1}^{4} are

$$
\begin{align*}
& \left(g_{11}^{\{3 ; \lambda\}}=\frac{r^{\prime 2}-\lambda}{4}\left(r^{2}\binom{k_{3}^{2}\left(3+\cosh 2 t+2 \cosh 2 w \sinh ^{2} t\right)}{+4 k_{2}^{2} \cosh ^{2} w-4 k_{2} k_{3} \sinh t \sinh 2 w}-4 \lambda\right)\right. \\
& +r^{2} k_{1}^{2}\left(r^{\prime 2}\left(1+\sinh ^{2} t \cosh ^{2} w\right)-\lambda \sinh ^{2} t \cosh ^{2} w\right)-2 \lambda r r^{\prime \prime}-\frac{\lambda r^{2} r^{\prime \prime 2}}{r^{\prime 2}-\lambda} \\
& -\frac{2 k_{1} r \cosh w}{\sqrt{r^{\prime 2}-\lambda}}\left(\left(r^{\prime 2}-\lambda\right)\left(\lambda k_{2} r r^{\prime} \cosh t \sinh t\right)+r r^{\prime \prime} \sinh t\right), \\
& g_{12}^{\{3 ; \lambda\}}=g_{21}^{\{3 ; \lambda\}}=r^{2}\binom{k_{2}\left(r^{\prime 2}-\lambda\right) \cosh w-\lambda k_{1} r^{\prime} \sqrt{r^{\prime 2}-\lambda} \cosh t}{-k_{3}\left(r^{\prime 2}-\lambda\right) \sinh t \sinh w} \cosh ^{2} w, \tag{39}\\
& g_{13}^{\{3 ; \lambda\}}=g_{31}^{\{3 ; \lambda\}}=r^{2}\left(k_{3}\left(r^{\prime 2}-\lambda\right) \cosh t-\lambda k_{1} r^{\prime} \sqrt{r^{\prime 2}-\lambda} \sinh t \sinh w\right) \text {, } \\
& g_{22}^{\{3 ; \lambda\}}=\left(r^{\prime 2}-\lambda\right) r^{2} \cosh ^{2} w, g_{23}^{\{3 ; \lambda\}}=g_{32}^{\{3 ; \lambda\}}=0, g_{33}^{\{3 ; \lambda\}}=\left(r^{\prime 2}-\lambda\right) r^{2} \text {; } \\
& \left\{\begin{aligned}
h_{11}^{\{3 ; \lambda\}}= & 2 k_{1} k_{2} r r^{\prime} \sqrt{r^{\prime 2}-\lambda} \cosh t \cosh w-\lambda k_{2}^{2} r\left(r^{\prime 2}-\lambda\right) \cosh ^{2} w \\
& -\frac{\lambda k_{3}^{2} r\left(r^{\prime 2}-\lambda\right)}{4}\left(3+\cosh (2 t)+2 \sinh ^{2} t \cosh (2 w)\right) \\
& +\lambda k_{2} k_{3} r\left(r^{\prime 2}-\lambda\right) \sinh t \sinh (2 w)+r^{\prime \prime}+\frac{r r^{\prime \prime 2}}{-\lambda+r^{\prime 2}} \\
& +\frac{k_{1}^{2} r}{4}\left(4 \cosh ^{2} w \sinh ^{2} t-\lambda r^{\prime 2}\left(3+\cosh (2 t)+2 \sinh ^{2} t \cosh (2 w)\right)\right) \\
& +\frac{\lambda}{\sqrt{r^{\prime 2}-\lambda}}\left(k_{1}\left(r^{\prime 2}-\lambda+2 r r^{\prime \prime}\right) \cosh w \sinh t\right), \\
h_{12}^{\{3 ; \lambda\}}= & h_{21}^{\{3 ; \lambda\}}=r\binom{k_{1} r^{\prime} \sqrt{r^{\prime 2}-\lambda} \cosh t}{-\lambda\left(r^{\prime 2}-\lambda\right)\left(k_{2} \cosh w+k_{3} \sinh t \sinh w\right)} \cosh w, \\
h_{13}^{\{3 ; \lambda\}}= & h_{31}^{\{3 ; \lambda\}}=r\left(k_{1} r^{\prime} \sqrt{r^{\prime 2}-\lambda} \sinh t \sinh w-\lambda k_{3}\left(r^{\prime 2}-\lambda\right) \cosh t\right), \\
h_{22}^{\{3 ; \lambda\}}= & -\lambda r\left(r^{\prime 2}-\lambda\right) \cosh ^{2} w, \quad h_{23}^{\{3 ; \lambda\}}=h_{32}^{\{3 ; \lambda\}}=0, \quad h_{33}^{\{3 ; \lambda\}}=-\lambda r\left(r^{\prime 2}-\lambda\right)
\end{aligned}\right.
\end{align*}
$$

and the coefficients of the first and second fundamental forms of the canal hypersurfaces $\mathfrak{C}^{\{4 ; \lambda\}}$ that are formed as the envelope of a family of pseudo hyperspheres or pseudo hyperbolic hyperspheres whose centers lie on a spacelike
center curve with the timelike trinormal vector in E_{1}^{4} are

$$
\begin{align*}
& \left\{\begin{aligned}
g_{11}^{\{4, \lambda\}} & =\frac{-\lambda+r^{\prime 2}}{4}\left(r^{2}\binom{k_{2}^{2}\left(2 \cosh 2 t \cosh ^{2} w+\cosh 2 w-3\right)}{+4 k_{3}^{2} \cosh ^{2} w+4 k_{2} k_{3} \cosh t \sinh 2 w}-4 \lambda\right) \\
& +r^{2} k_{1}^{2}\left(r^{\prime 2} \cosh ^{2} w-\lambda \sinh ^{2} w\right)-2 \lambda r r^{\prime \prime}-\frac{\lambda r^{2} r^{\prime \prime 2}}{-\lambda+r^{\prime 2}}
\end{aligned}\right)=\begin{aligned}
& +\frac{2 \lambda k_{1} r}{\sqrt{r^{\prime 2}-\lambda}}\left(k_{2} r r^{\prime}\left(r^{\prime 2}-\lambda\right) \cosh w \sinh t-\lambda\left(r^{\prime 2}-\lambda+r r^{\prime \prime}\right) \sinh w\right), \\
g_{12}^{\{4, \lambda\}}= & g_{21}^{\{4 \lambda\}}=r^{2}\left(r^{\prime 2}-\lambda\right)\left(k_{2} \cosh t \sinh w+k_{3} \cosh w\right) \cosh w, \\
g_{13}^{\{4 \lambda \lambda\}}= & g_{31}^{\{4 \lambda \lambda}=-r^{2}\left(\lambda k_{1} r^{\prime} \sqrt{r^{\prime 2}-\lambda} \cosh w+k_{2}\left(r^{\prime 2}-\lambda\right) \sinh t\right), \\
g_{22}^{\{4, \lambda\}} & =r^{2}\left(r^{\prime 2}-\lambda\right) \cosh ^{2} w, \quad g_{23}^{\{4 ; \lambda\}}=g_{32}^{\{4 ; \lambda\}}=0, g_{33}^{\{4 ; \lambda\}}=r^{2}\left(r^{\prime 2}-\lambda\right)
\end{aligned} \tag{41}\\
& \left\{\begin{aligned}
h_{11}^{\{4 ; \lambda\}}= & \frac{-r\left(r^{\prime 2}-\lambda\right)}{4}\left(k_{2}^{2}\left(\cosh (2 t)+2 \cosh ^{2} t \cosh (2 w)-3\right)\right. \\
& \left.+4 k_{3}\left(k_{3} \cosh ^{2} w+k_{2} \cosh t \sinh (2 w)\right)\right) \\
& +\lambda k_{1}^{2} r\left(\sinh ^{2} w-\lambda r^{\prime 2} \cosh ^{2} w\right)+\lambda r^{\prime \prime}+\frac{\lambda r r^{\prime \prime 2}}{r^{\prime 2}-\lambda} \\
& +\frac{k_{1}}{\sqrt{r^{\prime 2}-\lambda}}\left(\left(\sinh w-2 \lambda k_{2} r r^{\prime} \sinh t \cosh w\right)\left(r^{\prime 2}-\lambda\right)+2 r r^{\prime \prime} \sinh w\right), \\
h_{12}^{\{4 ; \lambda\}}= & h_{21}^{\{4, \lambda\}}=-r\left(k_{3} \cosh w+k_{2} \cosh t \sinh w\right)\left(r^{\prime 2}-\lambda\right) \cosh w, \\
h_{13}^{\{4 ; \lambda\}}= & h_{31}^{\{4 ; \lambda\}}=r\left(\lambda k_{1} r^{\prime} \sqrt{r^{\prime 2}-\lambda} \cosh w+k_{2}\left(r^{\prime 2}-\lambda\right) \sinh t\right), \\
h_{22}^{\{4 ; \lambda\}}= & -r\left(r^{\prime 2}-\lambda\right) \cosh ^{2} w, \quad h_{23}^{\{4 ; \lambda\}}=h_{32}^{\{4 ; \lambda\}}=0, \quad h_{33}^{\{4 ; \lambda\}}=-r\left(r^{\prime 2}-\lambda\right)
\end{aligned}\right.
\end{align*}
$$

and these imply that

$$
\begin{equation*}
\operatorname{det} g_{i j}^{\{j ; \lambda\}}=-\lambda A^{2} r^{4}\left(r^{\prime 2}-\lambda \varepsilon_{1}\right)\left(r^{\prime 2}-\lambda \varepsilon_{1}+\varepsilon_{2} \lambda k_{1} f_{j} r \sqrt{r^{\prime 2}-\lambda \varepsilon_{1}}+r r^{\prime \prime}\right)^{2}, \tag{43}
\end{equation*}
$$

(44) $\operatorname{det} h_{i j}^{\{j ; \lambda\}}$

$$
\begin{aligned}
= & -\lambda A^{2} r^{2}\left(r^{\prime 2}-\lambda \varepsilon_{1}\right)\left[\varepsilon_{3} \varepsilon_{4} \lambda^{j} f_{j}^{2} k_{1}^{2} r\left(r^{\prime 2}-\lambda \varepsilon_{1}\right)\right. \\
& \left.+\varepsilon_{3} \varepsilon_{4} \lambda^{j} r^{\prime \prime}\left(r^{\prime 2}-\lambda \varepsilon_{1}+r r^{\prime \prime}\right)+\varepsilon_{2} \varepsilon_{3} \varepsilon_{4} \lambda^{j+1} f_{j} k_{1} \sqrt{r^{\prime 2}-\lambda \varepsilon_{1}}\left(r^{\prime 2}-\lambda \varepsilon_{1}+2 r r^{\prime \prime}\right)\right],
\end{aligned}
$$

where $A=\cos w$ for $j=1$ and $A=\cosh w$ for $j=2,3,4$. Thus, from (11), (43) and (44), the Gaussian curvatures are obtained as (30). Here, obtaining the inverse of the first fundamental forms and using these and second fundamental forms in (10), we obtain the components of the shape operators of canal hypersurfaces $\mathfrak{C}\{j ; \lambda\}$ as
(45)

$$
\left\{\begin{aligned}
& S_{11}^{\{1 ; \lambda\}}=\frac{\lambda k_{1}^{2} r\left(r^{\prime 2}+\lambda\right) \cos ^{2} t \cos ^{2} w+\lambda r^{\prime \prime}\left(r^{\prime 2}+\lambda+r r^{\prime \prime}\right)+k_{1} \sqrt{r^{\prime 2}+\lambda}\left(r^{\prime 2}+\lambda+2 r r^{\prime \prime}\right) \cos t \cos w}{\left(r^{\prime 2}+\lambda+r\left(\lambda k_{1} \sqrt{r^{\prime 2}+\lambda} \cos t \cos w+r^{\prime \prime}\right)\right)^{2}} \\
& S_{21}^{\{1 ; \lambda\}}=\frac{-\lambda \sqrt{r^{\prime 2}+\lambda}\left(k_{1} r^{\prime} \sin t \sec w-\lambda k_{2} \sqrt{r^{\prime 2}+\lambda}+\lambda k_{3} \sqrt{r^{\prime 2}+\lambda} \cos t \tan w\right) \sec w}{r\left(k_{1} r \sqrt{r^{\prime 2}+\lambda} \cos t+\lambda\left(r^{\prime 2}+\lambda+r r^{\prime \prime}\right) \sec w\right)} \\
& S_{31}^{\{1 ; \lambda\}}=\frac{\lambda\left(\lambda k_{3}\left(r^{\prime 2}+\lambda\right) \sin t-k_{1} r^{\prime} \sqrt{r^{\prime 2}+\lambda} \cos t \sin w\right)}{r\left(1+\lambda r^{\prime 2}+r\left(k_{1} \sqrt{\lambda+r^{\prime 2}} \cos t \cos w+\lambda r^{\prime \prime}\right)\right)} \\
& S_{22}^{\{1 ; \lambda\}}=S_{33}^{\{1 ; \lambda\}}=\frac{\lambda}{r} \\
& S_{12}^{\{1 ; \lambda\}}=S_{13}^{\{1 ; \lambda\}}=S_{23}^{\{1 ; \lambda\}}=S_{32}^{\{1 ; \lambda\}}=0
\end{aligned}\right.
$$

(46)

$$
\left\{\begin{array}{l}
S_{11}^{\{2 ; \lambda\}}=\frac{k_{1}^{2} r\left(r^{\prime 2}-\lambda\right) \cosh ^{2} t \cosh ^{2} w+r^{\prime \prime}\left(r^{\prime 2}-\lambda+r r^{\prime \prime}\right)-\lambda k_{1} \sqrt{r^{\prime 2}-\lambda}\left(r^{\prime 2}-\lambda+2 r r^{\prime \prime}\right) \cosh t \cosh w}{\left(r^{\prime 2}-\lambda+r\left(-\lambda k_{1} \sqrt{r^{\prime 2}-\lambda} \cosh \cosh w+r^{\prime \prime}\right)\right)^{2}}, \\
S_{21}^{\{2, \lambda\}}=\frac{\left(\lambda k_{1} r^{\prime} \sqrt{r^{\prime 2}-\lambda} \sin h \sec h w+\left(k_{3} \cosh t-k_{2} \sinh t\right) \sqrt{r^{\prime 2}-\lambda} \tan w\right) \sec h w}{r\left(\left(r^{\prime 2}-\lambda+r r^{\prime \prime}\right) \sec h w-\lambda k_{1} r \sqrt{\left.r^{\prime 2}-\lambda \cosh t\right)},\right.} \\
S_{31}^{\{2 ; \lambda\}}=\frac{-k_{1} r^{\prime} \sqrt{r^{\prime \prime 2}-\lambda} \cosh h \sinh w-\lambda k_{2}\left(r^{\prime 2}-\lambda\right) \cosh t+\lambda k_{3}\left(r^{\prime 2}-\lambda\right) \sinh t}{r\left(1-\lambda r^{\prime 2}+r\left(k_{1} \sqrt{\left.\left.r^{\prime 2}-\lambda \cosh t \cosh w-\lambda r^{\prime \prime}\right)\right)},\right.\right.} \\
S_{22}^{\{2 ; \lambda\}}=S_{33}^{\{2 ; \lambda\}}=\frac{1}{r}, \\
S_{12}^{\{2 ; \lambda\}}=S_{13}^{\{2 ; \lambda\}}=S_{23}^{\{2 ; \lambda\}}=S_{32}^{\{2 ; \lambda\}}=0 ;
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
S_{11}^{\{3 ; \lambda\}}=-\lambda \frac{k_{1}^{2} r\left(r^{\prime 2}-\lambda\right) \sinh ^{2} t \cosh ^{2} w+r^{\prime \prime}\left(r^{\prime 2}-\lambda+r r^{\prime \prime}\right)+\lambda k_{1} \sqrt{r^{\prime 2}-\lambda}\left(r^{\prime 2}-\lambda+2 r r^{\prime \prime}\right) \sinh t \cosh w}{\left(r^{\prime 2}-\lambda+r\left(\lambda k_{1} \sqrt{r^{\prime 2}-\lambda} \sinh t \cosh w+r^{\prime \prime}\right)\right)^{2}}, \tag{47}\\
S_{21}^{\{3 ; \lambda\}}=\frac{\sec h w\left(k_{1} r^{\prime} \sqrt{r^{\prime 2}-\lambda} \cosh t \sec h w-\lambda\left(k_{2}-k_{3} \sinh t \tanh w\right)\left(r^{\prime 2}-\lambda\right)\right)}{r\left(\lambda k_{1} r \sqrt{r^{\prime 2}-\lambda} \sinh t+\left(-\lambda+r^{\prime 2}+r r^{\prime \prime}\right) \sec h w\right)}, \\
S_{31}^{\{3 ; \lambda\}}=\frac{k_{1} r^{\prime} \sqrt{r^{\prime 2}-\lambda} \sinh t \sinh w-\lambda k_{3}\left(r^{\prime 2}-\lambda\right) \cosh t}{r\left(r^{\prime 2}-\lambda+r\left(\lambda k_{1} \sqrt{-\lambda+r^{\prime 2}} \sinh t \cosh w+r^{\prime \prime}\right)\right)}, \\
S_{22}^{\{3 ; \lambda\}}=S_{33}^{\{3 ; \lambda\}}=-\frac{\lambda}{r}, \\
S_{12}^{\{3 ; \lambda\}}=S_{13}^{\{3 ; \lambda\}}=S_{23}^{\{3 ; \lambda\}}=S_{32}^{\{3 ; \lambda\}}=0 ; \\
\left\{\begin{array}{l}
S_{11}^{\{4 ; \lambda\}}=\frac{-k_{1}^{2} r\left(r^{\prime 2}-\lambda\right) \sinh ^{2} w-r^{\prime \prime}\left(r^{\prime 2}-\lambda+r r^{\prime \prime}\right)-\lambda k_{1} \sqrt{r^{\prime 2}-\lambda}\left(r^{\prime 2}-\lambda+2 r r^{\prime \prime}\right) \sinh w}{\left(r^{\prime 2}-\lambda+r\left(\lambda k_{1} \sqrt{-\lambda+r^{\prime 2}} \sinh w+r^{\prime \prime}\right)\right)^{2}} \\
S_{21}^{\{4 ; \lambda\}}=-\lambda \frac{\left(k_{3}+k_{2} \tanh w \cosh t\right)\left(r^{\prime 2}-\lambda\right)}{r\left(\lambda r^{\prime 2}-1+r\left(k_{1} \sqrt{r^{\prime 2}-\lambda} \sinh w+\lambda r^{\prime \prime}\right)\right)}, \\
S_{31}^{\{4 ; \lambda\}}=\frac{k_{1} r^{\prime} \sqrt{r^{\prime 2}-\lambda} \cosh w+\lambda k_{2}\left(r^{\prime 2}-\lambda\right) \sinh t}{r\left(\lambda r^{\prime 2}-1+r\left(k_{1} \sqrt{r^{\prime 2}-\lambda} \sinh w+\lambda r^{\prime \prime}\right)\right)}, \\
S_{22}^{\{4 ; \lambda\}}=S_{33}^{\{4 ; \lambda\}}=-\frac{1}{r}, \\
S_{12}^{\{4 ; \lambda\}}=S_{13}^{\{4 ; \lambda\}}=S_{23}^{\{4 ; \lambda\}}=S_{32}^{\{4 ; \lambda\}}=0 .
\end{array}\right.
\end{array}\right.
$$

From (12) and (45)-(48), we obtain the mean curvatures of the canal hypersurfaces $\mathfrak{C}^{\{j ; \lambda\}}$ as (31).

Finally, from (45)-(48), we get
(49) $\operatorname{det}(S-\mu I)$

$$
=\left(\mu-\frac{\varepsilon_{3} \varepsilon_{4} \lambda^{j}}{r}\right)^{2}\left(\frac{\binom{\varepsilon_{3} \varepsilon_{4} \lambda^{j}\left(r k_{1}^{2} f_{j}^{2}\left(r^{\prime 2}-\lambda \varepsilon_{1}\right)+r^{\prime \prime}\left(r^{\prime 2}-\lambda \varepsilon_{1}+r r^{\prime \prime}\right)\right)}{+\varepsilon_{2} \varepsilon_{3} \varepsilon_{4} \lambda^{j+1} k_{1} f_{j} \sqrt{r^{\prime 2}-\lambda \varepsilon_{1}}\left(r^{\prime 2}-\lambda \varepsilon_{1}+2 r r^{\prime \prime}\right)}}{\left(r^{\prime 2}-\lambda \varepsilon_{1}+\varepsilon_{2} \lambda r k_{1} f_{j} \sqrt{r^{\prime 2}-\lambda \varepsilon_{1}}+r r^{\prime \prime}\right)^{2}}-\mu\right)
$$

and solving the equation of $\operatorname{det}(S-\mu I)=0$ we have (32). So, the proof is completed.

Here, from (34) or (43), we can state the following proposition:
Proposition 2.4. The canal hypersurfaces $\mathfrak{C}^{\{j ; \lambda\}}(s, t, w)$ in E_{1}^{4} are spacelike or timelike if $\lambda=-1$ or $\lambda=1$, respectively.

2.3. Some geometric characterizations for canal hypersurfaces

From (30) and (31), we can obtain the following important relation between the Gaussian and mean curvatures of the canal hypersurfaces $\mathfrak{C}^{\{j ; \lambda\}}$:

Theorem 2.5. The Gaussian and mean curvatures of the canal hypersurfaces $\mathfrak{C}^{\{j ; \lambda\}}(s, t, w)$, given by (13) in E_{1}^{4}, satisfy

$$
\begin{equation*}
3 H^{\{j ; \lambda\}} r-K^{\{j ; \lambda\}} r^{3}-2 \varepsilon_{3} \varepsilon_{4} \lambda^{j+1}=0 \tag{50}
\end{equation*}
$$

Theorem 2.6. The canal hypersurfaces $\mathfrak{C}^{\{j ; \lambda\}}(s, t, w)$, given by (13) in E_{1}^{4}, are flat if and only if $k_{1}=0$ and $r(s)=a s+b$, where $a, b \in \mathbb{R}, a \neq \mp 1$.
Proof. Firstly, let us suppose that the canal hypersurfaces $\mathfrak{C}^{\{j ; \lambda\}}(s, t, w)$ in E_{1}^{4} are flat. Then from (30) we get

$$
\begin{align*}
& r k_{1}^{2}\left(r^{\prime 2}-\lambda \varepsilon_{1}\right) f_{j}^{2}+\varepsilon_{2} \lambda k_{1} \sqrt{r^{\prime 2}-\lambda \varepsilon_{1}}\left(r^{\prime 2}-\lambda \varepsilon_{1}+2 r r^{\prime \prime}\right) f_{j} \tag{51}\\
& +r^{\prime \prime}\left(r^{\prime 2}-\lambda \varepsilon_{1}+r r^{\prime \prime}\right)=0 .
\end{align*}
$$

Since $\left\{f_{j}, f_{j}^{2}, 1\right\}$ are linearly independent, we have

$$
\begin{align*}
r k_{1}^{2}\left(r^{\prime 2}-\lambda \varepsilon_{1}\right) & =\varepsilon_{2} \lambda k_{1} \sqrt{r^{\prime 2}-\lambda \varepsilon_{1}}\left(r^{\prime 2}-\lambda \varepsilon_{1}+2 r r^{\prime \prime}\right) \tag{52}\\
& =r^{\prime \prime}\left(r^{\prime 2}-\lambda \varepsilon_{1}+r r^{\prime \prime}\right)=0
\end{align*}
$$

From the (52), we get $k_{1}=0$ and $r^{\prime \prime}\left(r^{\prime 2}-\lambda \varepsilon_{1}+r r^{\prime \prime}\right)=0$. When $k_{1}=0$, from (30) we have $r^{\prime 2}-\lambda \varepsilon_{1}+r r^{\prime \prime} \neq 0$ and so it must be $r^{\prime \prime}=0$.

Conversely, if $k_{1}=0$ and $r(s)=a s+b$, where $a, b \in \mathbb{R}, a \neq \mp 1$, from (30) we get $K=0$ and this completes the proof.
Theorem 2.7. The canal hypersurfaces $\mathfrak{C}^{\{j ; \lambda\}}(s, t, w)$, given by (13) in E_{1}^{4}, are minimal if and only if $k_{1}=0$ and the radius $r(s)$ satisfies

$$
\int \frac{d r}{\sqrt{\varepsilon_{1} \lambda+\left(\frac{c_{1}}{r}\right)^{\frac{4}{3}}}}= \pm s+c_{2}
$$

where $c_{1}, c_{2} \in \mathbb{R}$.
Proof. Firstly, let us suppose that the canal hypersurfaces $\mathfrak{C}^{\{j ; \lambda\}}(s, t, w)$ in E_{1}^{4} are minimal. Then from (31) we get

$$
\begin{align*}
& -3 r^{2} k_{1}^{2}\left(\varepsilon_{1} \lambda-r^{\prime 2}\right) f_{j}^{2}-\varepsilon_{2} \lambda k_{1} r \sqrt{r^{\prime 2}-\lambda \varepsilon_{1}}\left(5 \varepsilon_{1} \lambda-5 r^{\prime 2}-6 r r^{\prime \prime}\right) f_{j} \tag{53}\\
& +2+2 r^{\prime 4}-5 \varepsilon_{1} \lambda r r^{\prime \prime}+3 r^{2} r^{\prime \prime 2}+r^{\prime 2}\left(-4 \varepsilon_{1} \lambda+5 r r^{\prime \prime}\right)=0
\end{align*}
$$

Since $\left\{f_{j}, f_{j}^{2}, 1\right\}$ are linearly independent, we have

$$
\left\{\begin{array}{l}
-3 r^{2} k_{1}^{2}\left(\varepsilon_{1} \lambda-r^{\prime 2}\right)=0 \tag{54}\\
\varepsilon_{2} \lambda k_{1} r \sqrt{r^{\prime 2}-\lambda \varepsilon_{1}}\left(5 \varepsilon_{1} \lambda-5 r^{\prime 2}-6 r r^{\prime \prime}\right)=0 \\
2+2 r^{\prime 4}-5 \varepsilon_{1} \lambda r r^{\prime \prime}+3 r^{2} r^{\prime \prime 2}+r^{\prime 2}\left(-4 \varepsilon_{1} \lambda+5 r r^{\prime \prime}\right)=0
\end{array}\right.
$$

From (54), we get $k_{1}=0$ and $2+2 r^{4}-5 \varepsilon_{1} \lambda r r^{\prime \prime}+3 r^{2} r^{\prime \prime 2}+r^{\prime 2}\left(-4 \varepsilon_{1} \lambda+5 r r^{\prime \prime}\right)=$ 0 ; i.e.,

$$
\begin{equation*}
\left(2 \varepsilon_{1} \lambda-2 r^{\prime 2}-3 r r^{\prime \prime}\right)\left(\varepsilon_{1} \lambda-r^{\prime 2}-r r^{\prime \prime}\right)=0 \tag{55}
\end{equation*}
$$

When $k_{1}=0$, from (31) we have $r^{2}-\lambda \varepsilon_{1}+r r^{\prime \prime} \neq 0$ and so it must be

$$
\begin{equation*}
-2\left(r^{\prime 2}-\varepsilon_{1} \lambda\right)-3 r r^{\prime \prime}=0 \tag{56}
\end{equation*}
$$

Now, let us solve the equation (56).
If we take $r^{\prime}(s)=h(s)$, we get

$$
\begin{equation*}
r^{\prime \prime}=h^{\prime}=\frac{d h}{d r} \frac{d r}{d s}=\frac{d h}{d r} h \tag{57}
\end{equation*}
$$

Using (57) in (56), we have

$$
\begin{equation*}
3 r \frac{d h}{d r} h+2 h^{2}-2 \varepsilon_{1} \lambda=0 \tag{58}
\end{equation*}
$$

From (56), $r^{\prime}(s)=h(s) \neq 0$ and so we reach that

$$
\begin{equation*}
\frac{3 h}{2\left(\varepsilon_{1} \lambda-h^{2}\right)} d h=\frac{d r}{r} . \tag{59}
\end{equation*}
$$

By integrating (59), we have

$$
\begin{equation*}
h= \pm \sqrt{\varepsilon_{1} \lambda+\left(\frac{c_{1}}{r}\right)^{\frac{4}{3}}} \tag{60}
\end{equation*}
$$

where c_{1} is constant. Since $r^{\prime}=\frac{d r}{d s}=h$, from (60) we get

$$
\begin{equation*}
\int \frac{d r}{\sqrt{\varepsilon_{1} \lambda+\left(\frac{c_{1}}{r}\right)^{\frac{4}{3}}}}= \pm \int d s \tag{61}
\end{equation*}
$$

Conversely, if $k_{1}=0$ and $r(s)$ satisfies $\int \frac{d r}{\sqrt{\varepsilon_{1} \lambda+\left(\frac{c_{1}}{r}\right)^{\frac{4}{3}}}}= \pm s+c_{2}$, where $c_{1}, c_{2} \in \mathbb{R}$, then we have $H=0$ and this completes the proof.

Now, if

$$
\begin{equation*}
H_{s} K_{t}-H_{t} K_{s}=0, H_{s} K_{w}-H_{w} K_{s}=0, H_{t} K_{w}-H_{w} K_{t}=0 \tag{62}
\end{equation*}
$$

hold on a hypersurface, then we call the hypersurface as $(H, K)_{s t}$-Weingarten, $(H, K)_{s w}$-Weingarten, $(H, K)_{t w}$-Weingarten hypersurface, respectively, where $H_{s}=\frac{\partial H}{\partial s}$ and so on. So, from (30) and (31) we have:

Theorem 2.8. The canal hypersurfaces $\mathfrak{C}^{\{j ; \lambda\}}(s, t, w)$, given by (13) in E_{1}^{4}, are $(H, K)_{t w}$-Weingarten.

Proof. From (30) and (31), we get $H_{t}^{\{j ; \lambda\}} K_{w}^{\{j ; \lambda\}}-H_{w}^{\{j ; \lambda\}} K_{t}^{\{j ; \lambda\}}=0$ and this completes the proof.

Theorem 2.9. The canal hypersurfaces $\mathfrak{C}^{\{j ; \lambda\}}(s, t, w)$, given by (13) in E_{1}^{4}, are $(H, K)_{s w}$-Weingarten if and only if $k_{1}=0$ or $r(s)=$ constant.

Proof. From (30) and (31), we have

$$
\begin{equation*}
H_{s}^{\{j ; \lambda\}} K_{w}^{\{j ; \lambda\}}-H_{w}^{\{j ; \lambda\}} K_{s}^{\{j ; \lambda\}} \tag{63}
\end{equation*}
$$

$$
=-\frac{\left(\begin{array}{l}
2 \varepsilon_{3}^{2} \varepsilon_{4}^{2} \lambda^{2 j} k_{1} r^{\prime}\left(r^{\prime 2}-\lambda \varepsilon_{1}\right)^{2} \\
\binom{\left.\left(\varepsilon_{2}^{2} \lambda^{2}-1\right) f_{j}^{2} k_{1}^{2} r^{2}+r^{\prime 2}-\lambda \varepsilon_{1}+\varepsilon_{2} \lambda k_{1} r \sqrt{r^{\prime 2}-\lambda \varepsilon_{1}} f_{j}+r r^{\prime \prime}\right)}{\binom{\varepsilon_{2} \lambda \sqrt{r^{\prime 2}-\lambda \varepsilon_{1}}\left(r^{\prime 2}-\lambda \varepsilon_{1}+r r^{\prime \prime}\right)}{+k_{1} r\left(\left(2-\varepsilon_{2}^{2} \lambda^{2}\right)\left(r^{\prime 2}-\lambda \varepsilon_{1}\right)-2\left(\varepsilon_{2}^{2} \lambda^{2}-1\right) r r^{\prime \prime}\right) f_{j}} f_{j_{w}}} \\
3 r^{4}\left(r^{\prime 2}-\lambda \varepsilon_{1}+\varepsilon_{2} \lambda k_{1} r \sqrt{r^{\prime 2}-\lambda \varepsilon_{1}} f_{j}+r r^{\prime \prime}\right)^{5}
\end{array} ~\right.}{\text {. }} .
$$

If $H_{s}^{\{j ; \lambda\}} K_{w}^{\{j ; \lambda\}}-H_{w}^{\{j ; \lambda\}} K_{s}^{\{j ; \lambda\}}=0$, then from (63) we have

$$
\begin{align*}
& 2 k_{1} r^{\prime}\left(r^{\prime 2}-\lambda \varepsilon_{1}\right)^{2}\binom{r^{\prime 2}-\lambda \varepsilon_{1}+r r^{\prime \prime}}{+\varepsilon_{2} \lambda k_{1} r \sqrt{r^{\prime 2}-\lambda \varepsilon_{1}} f_{j}} \tag{64}\\
& \binom{\varepsilon_{2} \lambda \sqrt{r^{\prime 2}-\lambda \varepsilon_{1}}\left(r^{\prime 2}-\lambda \varepsilon_{1}+r r^{\prime \prime}\right)}{+k_{1} r\left(r^{\prime 2}-\lambda \varepsilon_{1}\right) f_{j}} f_{j_{w}}=0
\end{align*}
$$

and so,
(65) $k_{1} r^{\prime}\binom{r^{\prime 2}-\lambda \varepsilon_{1}+r r^{\prime \prime}}{+\varepsilon_{2} \lambda k_{1} r \sqrt{r^{\prime 2}-\lambda \varepsilon_{1}} f_{j}}\binom{\varepsilon_{2} \lambda \sqrt{r^{\prime 2}-\lambda \varepsilon_{1}}\left(r^{\prime 2}-\lambda \varepsilon_{1}+r r^{\prime \prime}\right)}{+k_{1} r\left(r^{\prime 2}-\lambda \varepsilon_{1}\right) f_{j}}=0$.

From (63), the second and third component of (65) cannot be zero and so it must be

$$
\begin{equation*}
k_{1} r^{\prime}=0 . \tag{66}
\end{equation*}
$$

This completes the proof.
Theorem 2.10. The canal hypersurfaces $\mathfrak{C}^{\{4 ; \lambda\}}(s, t, w)$, given by (13) in E_{1}^{4}, are $(H, K)_{s t}$-Weingarten. Also, the canal hypersurfaces $\mathfrak{C}^{\{1 ; \lambda\}}(s, t, w)$, $\mathfrak{C}^{\{2 ; \lambda\}}(s, t, w), \mathfrak{C}^{\{3 ; \lambda\}}(s, t, w)$, given by (13) in E_{1}^{4}, are $(H, K)_{s t}$-Weingarten if and only if $k_{1}=0$ or $r(s)=$ constant.

Proof. From (30) and (31), we have

$$
\begin{align*}
& H_{s}^{\{j ; \lambda\}} K_{t}^{\{j ; \lambda\}}-H_{t}^{\{j ; \lambda\}} K_{s}^{\{j ; \lambda\}} \tag{67}\\
= & -\frac{\left(\begin{array}{c}
2 \varepsilon_{3}^{2} \varepsilon_{4}^{2} \lambda^{2 j} k_{1} r^{\prime}\left(r^{\prime 2}-\lambda \varepsilon_{1}\right)^{2} \\
\left(\left(\varepsilon_{2}^{2} \lambda^{2}-1\right) k_{1}^{2} r^{2} f_{j}^{2}+r^{\prime 2}-\lambda \varepsilon_{1}+\varepsilon_{2} \lambda k_{1} r \sqrt{r^{\prime 2}-\lambda \varepsilon_{1}} f_{j}+r r^{\prime \prime}\right) \\
\binom{\varepsilon_{2} \lambda \sqrt{r^{\prime 2}-\lambda \varepsilon_{1}}\left(r^{\prime 2}-\lambda \varepsilon_{1}+r r^{\prime \prime}\right)}{+k_{1} r\left(\left(2-\varepsilon_{2}^{2} \lambda^{2}\right)\left(r^{\prime 2}-\lambda \varepsilon_{1}\right)-2\left(\varepsilon_{2}^{2} \lambda^{2}-1\right) r r^{\prime \prime}\right) f_{j}} f_{j_{t}}
\end{array}\right)}{3 r^{4}\left(r^{\prime 2}-\lambda \varepsilon_{1}+\varepsilon_{2} \lambda k_{1} r \sqrt{r^{\prime 2}-\lambda \varepsilon_{1}} f_{j}+r r^{\prime \prime}\right)^{5}} .
\end{align*}
$$

Using (33), for $j=1,2,3$ the proof can be seen with similar method in Theorem 2.9. Also, for $j=4$ we have $f_{4_{t}}=0$ and so $H_{s}^{\{4 ; \lambda\}} K_{t}^{\{4 ; \lambda\}}-H_{t}^{\{4 ; \lambda\}} K_{s}^{\{4 ; \lambda\}}=0$ and this completes the proof.

3. Tubular hypersurfaces generated by non-null curves

In this section, we give the above results, which are given for the canal hypersurfaces in E_{1}^{4}, for tubular hypersurfaces.

Theorem 3.1. The tubular hypersurfaces $\mathfrak{T}^{\{j ; \lambda\}}(s, t, w)$ that are formed as the envelope of a family of pseudo hyperspheres or pseudo hyperbolic hyperspheres whose centers lie on a non-null curve with non-null Frenet vectors in E_{1}^{4} can be parametrized by

$$
\left\{\begin{array}{l}
\mathfrak{T}\{1 ; 1\}(s, t, w)=\beta(s) \mp r(s)\left(\cos t \cos w F_{2}(s)+\sin t \cos w F_{3}+\sin w F_{4}\right), \tag{68}\\
\mathfrak{T}\{2 ; 1\}(s, t, w)=\beta(s) \mp r(s)\left(\cosh t \sinh w F_{2}(s)+\cosh w F_{3}+\sinh t \sinh w F_{4}\right), \\
\mathfrak{T}\{2 ;-1\}(s, t, w)=\beta(s) \mp r(s)\left(\cosh t \cosh w F_{2}(s)+\sinh w F_{3}+\sinh t \cosh w F_{4}\right), \\
\mathfrak{T}\{3,1\}(s, t, w)=\beta(s) \mp r(s)\left(\sinh t \sinh w F_{2}(s)+\cosh t \sinh w F_{3}+\cosh w F_{4}\right), \\
\mathfrak{T}^{3(3 ; 1\}}(s, t, w)=\beta(s) \mp r(s)\left(\sinh t \cosh w F_{2}(s)+\cosh t \cosh w F_{3}+\sinh w F_{4}\right), \\
\mathfrak{T}\{4,1\}(s, t, w)=\beta(s) \mp r(s)\left(\cosh w F_{2}(s)+\sinh t \sinh w F_{3}+\cosh t \sinh w F_{4}\right), \\
\mathfrak{T}\{4 ;-1\}(s, t, w)=\beta(s) \mp r(s)\left(\sinh w F_{2}(s)+\sinh t \cosh w F_{3}+\cosh t \cosh w F_{4}\right) .
\end{array}\right.
$$

Also, there is no tubular hypersurface $\mathfrak{T}^{\{1 ;-1\}}(s, t, w)$ that is formed as the envelope of a family of pseudo hyperbolic hyperspheres whose centers lie on a timelike curve in E_{1}^{4}.

Furthermore the tubular hypersurfaces $\mathfrak{T}^{\{j ; 0\}}(s, t, w)$ that are formed as the envelope of a family of null hypercones whose centers lie on a non-null curve in E_{1}^{4} can be parametrized by (27).

Proof. Let the center curve $\beta: I \subseteq \mathbb{R} \rightarrow E_{1}^{4}$ be an arc-length parametrized timelike or spacelike curve with non-zero curvature. Then, the parametrization of the envelope of pseudo hyperspheres (resp. pseudo hyperbolic hyperspheres or null hypercones) defining the tubular hypersurfaces $\mathfrak{T}^{\{j ; \lambda\}}$ in E_{1}^{4} can be given by

$$
\begin{align*}
\mathfrak{T}^{\{j ; \lambda\}}(s, t, w)-\beta(s)= & a_{1}(s, t, w) F_{1}(s)+a_{2}(s, t, w) F_{2}(s) \tag{69}\\
& +a_{3}(s, t, w) F_{3}(s)+a_{4}(s, t, w) F_{4}(s) .
\end{align*}
$$

Furthermore, since $\mathfrak{T}^{\{j ; \lambda\}}(s, t, w)$ lies on the pseudo hyperspheres (resp. pseudo hyperbolic hyperspheres or null hypercones), we have

$$
\begin{equation*}
g\left(\mathfrak{T}^{\{j ; \lambda\}}(s, t, w)-\beta(s), \mathfrak{T}^{\{j ; \lambda\}}(s, t, w)-\beta(s)\right)=\lambda r^{2} \tag{70}
\end{equation*}
$$

which leads to from (69) that

$$
\begin{equation*}
\varepsilon_{1} a_{1}^{2}+\varepsilon_{2} a_{2}^{2}+\varepsilon_{3} a_{3}^{2}+\varepsilon_{4} a_{4}^{2}=\lambda r^{2} \tag{71}
\end{equation*}
$$

and

$$
\begin{equation*}
\varepsilon_{1} a_{1} a_{1_{s}}+\varepsilon_{2} a_{2} a_{2_{s}}+\varepsilon_{3} a_{3} a_{3_{s}}+\varepsilon_{4} a_{4} a_{4_{s}}=0 \tag{72}
\end{equation*}
$$

where $\lambda=1, \lambda=-1$ and $\lambda=0$ if the tubular hypersurfaces are obtained by pseudo hyperspheres, pseudo hyperbolic hyperspheres and null hypercones, respectively; r is constant radius $a_{i}=a_{i}(s, t, w), a_{i_{s}}=\frac{\partial a_{i}(s, t, w)}{\partial s}$, and so on.

With similar procedure in the proof of Theorem 2.1, we reach that

$$
\begin{equation*}
a=0 . \tag{73}
\end{equation*}
$$

Hence, using (73) in (71), we have

$$
\begin{equation*}
\varepsilon_{2} a_{2}^{2}+\varepsilon_{3} a_{3}^{2}+\varepsilon_{4} a_{4}^{2}=\lambda r^{2} \tag{74}
\end{equation*}
$$

From (69) and (74), we obtain the parametric expressions of the tubular hypersurfaces $\mathfrak{T}^{\{j ; \lambda\}}(s, t, w)$ as (68) and (27).

Now, let us give the Gaussian and mean curvatures of tubular hypersurfaces $\mathfrak{T}^{\{j ; \lambda\}}(s, t, w)$ given by (68) with similar method used for canal hypersurfaces.

Theorem 3.2. The Gaussian and mean curvatures of tubular hypersurfaces $\mathfrak{T}^{\{j ; \lambda\}}(s, t, w)$, given by (68) in E_{1}^{4}, are

$$
\left\{\begin{array}{l}
K^{\{1 ; 1\}}=\frac{k_{1} \cos t \cos w}{r^{2}\left(1+r k_{1} \cos t \cos w\right)}, H^{\{1 ; 1\}}=\frac{2+3 r k_{1} \cos t \cos w}{3 r\left(1+r k_{1} \cos t \cos w\right)} \tag{75}\\
K^{\{2 ; 1\}}=\frac{k_{1} \cosh t \sinh w}{r^{2}\left(1+r k_{1} \cosh t \sinh w\right)}, H^{\{2 ; 1\}}=\frac{2+3 r k_{1} \cosh t \sinh w}{3 r\left(1+r k_{1} \cosh t \sinh w\right)} \\
K^{\{2 ;-1\}}=-\frac{k_{1} \cosh t \cosh w}{r^{2}\left(1+r k_{1} \cosh t \cosh w\right)}, H^{\{2 ;-1\}}=-\frac{2+3 r k_{1} \cosh t \cosh w}{3 r\left(1+r k_{1} \cosh t \cosh w\right)} \\
K^{\{3 ; 1\}}=\frac{k_{1} \sinh t \sinh w}{r^{2}\left(1-r k_{1} \sinh t \sinh w\right)}, H^{\{3 ; 1\}}=\frac{2-3 r k_{1} \sinh t \sinh w}{3 r\left(-1+r k_{1} \sinh t \sinh w\right)} \\
K^{\{3 ;-1\}}=-\frac{k_{1} \sinh t \cosh w}{r^{2}\left(-1+r k_{1} \sinh t \cosh w\right)}, H^{\{3 ;-1\}}=-\frac{2-3 r k_{1} \sinh t \cosh w}{3 r\left(1-r k_{1} \sinh t \cosh w\right)} \\
K^{\{4 ; 1\}}=\frac{k_{1} \cosh w}{r^{2}\left(1-r k_{1} \cosh w\right)}, H^{\{4 ; 1\}}=\frac{2-3 r k_{1} \cosh w}{3 r\left(-1+r k_{1} \cosh w\right)} \\
K^{\{4 ;-1\}}=-\frac{k_{1} \sinh w}{r^{2}\left(1-r k_{1} \sinh w\right)}, H^{\{4 ;-1\}}=-\frac{2-3 r k_{1} \sinh w}{3 r\left(-1+r k_{1} \sinh w\right)}
\end{array}\right.
$$

From (75), we can state the following theorem:
Theorem 3.3. The tubular hypersurfaces $\mathfrak{T}^{\{j ; \lambda\}}(s, t, w)$, given by (68) in E_{1}^{4}, are $(H, K)_{t w}$-Weingarten, $(H, K)_{t s}$-Weingarten and $(H, K)_{s w}$-Weingarten hypersurfaces.

4. Visualization

In this section, we construct examples for canal hypersurfaces $\mathfrak{C}^{\{1 ; \lambda\}}(s, t, w)$ and $\mathfrak{C}^{\{3 ; \lambda\}}(s, t, w)$ that are formed as the envelope of a family of pseudo hyperspheres or pseudo hyperbolic hyperspheres whose center lie on a timelike curve and a spacelike curve with timelike binormal vector in E_{1}^{4}, separately.

Firstly, let us take the unit speed timelike curve

$$
\begin{equation*}
\beta_{1}(s)=(2 \sinh s, 2 \cosh s, \sqrt{3} \cos s, \sqrt{3} \sin s) \tag{76}
\end{equation*}
$$

in E_{1}^{4}. The Frenet vectors and curvatures of the curve (76) are

$$
\left\{\begin{array}{l}
F_{1}^{\beta_{1}}=(2 \cosh s, 2 \sinh s,-\sqrt{3} \sin s, \sqrt{3} \cos s), \tag{77}\\
F_{2}^{\beta_{1}}=\left(\frac{2}{\sqrt{7}} \sinh s, \frac{2}{\sqrt{7}} \cosh s,-\sqrt{\frac{3}{7}} \cos s,-\sqrt{\frac{3}{7}} \sin s\right), \\
F_{3}^{\beta_{1}}=(-\sqrt{3} \cosh s,-\sqrt{3} \sinh s, 2 \sin s,-2 \cos s), \\
F_{4}^{\beta_{1}}=\left(\sqrt{\frac{3}{7}} \sinh s, \sqrt{\frac{3}{7}} \cosh s, \frac{2}{\sqrt{7}} \cos s, \frac{2}{\sqrt{7}} \sin s\right), \\
k_{1}^{\beta_{1}}=\sqrt{7}, k_{2}^{\beta_{1}}=4 \sqrt{\frac{3}{7}}, k_{3}^{\beta_{1}}=\frac{1}{\sqrt{7}} .
\end{array}\right.
$$

From (26), the canal hypersurfaces $\mathfrak{C}^{\{1 ; \lambda\}}(s, t, w)$ that are formed as the envelope of a family of pseudo hyperspheres or pseudo hyperbolic hyperspheres
whose centers lie on the curve (76) in E_{1}^{4} are
(78) $\mathfrak{C}^{\{1 ; 1\}}(s, t, w)$

$$
=\left(\begin{array}{c}
-2 s(-4+\sqrt{15} \cos w \sin t) \cosh s+\frac{2}{7}(7+\sqrt{35 s}(2 \cos t \cos w+\sqrt{3} \sin w)) \sinh s, \\
-2 s(-4+\sqrt{15} \cos w \sin t) \sinh s+\frac{2}{7}(7+\sqrt{35} s(2 \cos t \cos w+\sqrt{3} \sin w)) \cosh s, \\
-4 s(\sqrt{3}-\sqrt{5} \cos w \sin t) \sin s+\left(\sqrt{3}-2 \sqrt{\frac{5}{7}} s(\sqrt{3} \cos t \cos w-2 \sin w)\right) \cos s, \\
\left(\sqrt{3}-2 \sqrt{\frac{5}{7}} s(\sqrt{3} \cos t \cos w-2 \sin w)\right) \sin s+4 s(\sqrt{3}-\sqrt{5} \cos w \sin t) \cos s
\end{array}\right)
$$

and

$$
\begin{align*}
& \mathfrak{C}^{\{1 ;-1\}}(s, t, w) \tag{79}\\
= & \left(\begin{array}{l}
-2 s(4+3 \cos w \sin t) \cosh s+\frac{2}{7}(7+2 \sqrt{21} s \cos t \cos w+3 \sqrt{7} s \sin w) \sinh s \\
-2 s(4+3 \cos w \sin t) \sinh s+\frac{2}{7}(7+\sqrt{21} s(2 \cos t \cos w+\sqrt{3} \sin w)) \cosh s \\
4 \sqrt{3} s(1+\cos w \sin t) \sin s+\left(\sqrt{3}-\frac{2}{\sqrt{7}} s(3 \cos t \cos w-2 \sqrt{3} \sin w)\right) \cos s \\
\left(\sqrt{3}-\frac{2}{\sqrt{7}} s(3 \cos t \cos w-2 \sqrt{3} \sin w)\right) \sin s-4 \sqrt{3} s(1+\cos w \sin t) \cos s
\end{array}\right),
\end{align*}
$$

where the radius function has been taken as $r(s)=2 s$. From (30), (31) and (32), the Gaussian, mean and principal curvatures of the canal hypersurfaces $\mathfrak{C}^{\{1 ; 1\}}$ and $\mathfrak{C}^{\{1 ;-1\}}$ are obtained as

$$
\left\{\begin{array}{l}
K^{\{1 ; 1\}}=\frac{5(\sqrt{35}+14 s \cos t \cos w) \cos t \cos w}{4 s^{2}(5+2 \sqrt{35 s} \cos t \cos w)^{2}}, \tag{80}\\
H^{\{1 ; 1\}}=\frac{1}{3}\left(\frac{1}{s}+\frac{5(\sqrt{35}+14 s \cos t \cos w) \cos t \cos w}{(5+2 \sqrt{35} \cos t \cos w)^{2}}\right), \\
\mu_{1}^{\{1 ; 1\}}=\mu_{2}^{\{1 ; 1\}}=\frac{1}{2 s}, \mu_{3}^{\{1 ; 1\}}=\frac{5(\sqrt{35}+14 s \cos t \cos w) \cos t \cos w}{(5+2 \sqrt{35} s \cos t \cos w)^{2}}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
K^{\{1 ;-1\}}=-\frac{3(\sqrt{21}-14 s \cos t \cos w) \cos t \cos w}{4 s^{2}(3-2 \sqrt{21} s \cos t \cos w)^{2}} \tag{81}\\
H^{\{1 ;-1\}}=-\frac{-3+5 \sqrt{21} s \cos t \cos w-42 s^{2} \cos ^{2} t \cos ^{2} w}{s(3-2 \sqrt{21} s \cos t \cos w)^{2}} \\
\mu_{1}^{\{1 ;-1\}}=\mu_{2}^{\{1 ;-1\}}=\frac{-1}{2 s}, \mu_{3}^{\{1 ;-1\}}=\frac{3(\sqrt{21}-14 s \cos t \cos w) \cos t \cos w}{(3-2 \sqrt{21} s \cos t \cos w)^{2}}
\end{array}\right.
$$

respectively. In the following figures, one can see the projections of the canal hypersurfaces (78) and (79) for $w=2$ and $r(s)=2 s$ into $x_{2} x_{3} x_{4}$-spaces in (A) and (B) in Figure 1, respectively.

Secondly, let us take the unit speed spacelike curve with timelike binormal vector

$$
\begin{equation*}
\beta_{2}(s)=(\sqrt{3} \sinh s, \sqrt{3} \cosh s, 2 \cos s, 2 \sin s) \tag{82}
\end{equation*}
$$

Figure 1.
in E_{1}^{4}. The Frenet vectors and curvatures of the curve (82) are

$$
\left\{\begin{array}{l}
F_{1}^{\beta_{2}}=(\sqrt{3} \cosh s, \sqrt{3} \sinh s,-2 \sin s, 2 \cos s), \tag{83}\\
F_{2}^{\beta_{2}}=\left(\sqrt{\frac{3}{7}} \sinh s, \sqrt{\frac{3}{7}} \cosh s,-\frac{2}{\sqrt{7}} \cos s,-\frac{2}{\sqrt{7}} \sin s\right), \\
F_{3}^{\beta_{2}}=(2 \cosh s, 2 \sinh s,-\sqrt{3} \sin s, \sqrt{3} \cos s), \\
F_{4}^{\beta_{2}}=\left(\frac{2}{\sqrt{7}} \sinh s, \frac{2}{\sqrt{7}} \cosh s, \sqrt{\frac{3}{7}} \cos s, \sqrt{\frac{3}{7}} \sin s\right), \\
k_{1}^{\beta_{2}}=\sqrt{7}, k_{2}^{\beta_{2}}=4 \sqrt{\frac{3}{7}}, k_{3}^{\beta_{2}}=\frac{1}{\sqrt{7}} .
\end{array}\right.
$$

From (26), the canal hypersurfaces $\mathfrak{C}^{\{3 ; \lambda\}}(s, t, w)$ that are formed as the envelope of a family of pseudo hyperspheres or pseudo hyperbolic hyperspheres whose centers lie on the curve (82) in E_{1}^{4} are

$$
\begin{align*}
& \mathfrak{C}^{\{3 ; 1\}}(s, t, w) \tag{84}\\
& =\left(\begin{array}{l}
\frac{\sqrt{3}}{7}\left(\begin{array}{l}
28 s(-1+\cosh t \cosh w) \cosh s \\
+(7+2 \sqrt{21} s \cosh w \sinh t+4 \sqrt{7} s \sinh w) \sinh s \\
\frac{\sqrt{3}}{7}\binom{28 s(-1+\cosh t \cosh w) \sinh s}{+(7+2 \sqrt{21} s \cosh w \sinh t+4 \sqrt{7} s \sinh w) \cosh s}, \\
-6 s \sin s \cosh t \cosh w+2(\cos s+4 s \sin s) \\
+\frac{2 s}{\sqrt{7}}(-2 \sqrt{3} \cosh w \sinh t+3 \sinh w) \cos s, \\
2 s(-4+3 \cosh t \cosh w) \cos s \\
+\frac{2}{7}(7-2 \sqrt{21} s \cosh w \sinh t+3 \sqrt{7} s \sinh w) \sin s
\end{array}\right)
\end{array} .\left\{\begin{array}{l}
(7)
\end{array}\right)\right.
\end{align*}
$$

and

$$
\begin{equation*}
\mathfrak{C}^{\{3 ;-1\}}(s, t, w) \tag{85}
\end{equation*}
$$

$$
=\left(\begin{array}{l}
4 s(\sqrt{3}+\sqrt{5} \cosh t \cosh w) \cosh s \\
+\left(\sqrt{3}+2 \sqrt{\frac{5}{7}} s(\sqrt{3} \cosh w \sinh t+2 \sinh w)\right) \sinh s, \\
4 s(\sqrt{3}+\sqrt{5} \cosh t \cosh w) \sinh s \\
+\left(\sqrt{3}+2 \sqrt{\frac{5}{7}} s(\sqrt{3} \cosh w \sinh t+2 \sinh w)\right) \cosh s, \\
-2 s(4+\sqrt{15} \cosh t \cosh w) \sin s \\
+\frac{2}{7}(7+\sqrt{35} s(-2 \cosh w \sinh t+\sqrt{3} \sinh w)) \cos s, \\
2 s(4+\sqrt{15} \cosh t \cosh w) \cos s \\
+\frac{2}{7}(7+\sqrt{35} s(-2 \cosh w \sinh t+\sqrt{3} \sinh w)) \sin s
\end{array}\right),
$$

where the radius function has been taken as $r(s)=2 s$. From (30), (31) and (32), the Gaussian, mean and principal curvatures of the canal hypersurfaces $\mathfrak{C}^{\{3 ; 1\}}$ and $\mathfrak{C}^{\{3 ;-1\}}$ are obtained as

$$
\left\{\begin{array}{l}
K^{\{3 ; 1\}}=-\frac{(\sqrt{21}+14 s \cosh w \sinh t) \cosh w \sinh t}{4 s^{2}(\sqrt{3}+2 \sqrt{7} s \cosh w \sinh t)^{2}} \tag{86}\\
H^{\{3 ; 1\}}=-\frac{3+5 \sqrt{21} s \cosh w \sinh t+42 s^{2} \cosh ^{2} w \sinh ^{2} t}{s(3+2 \sqrt{21} s \cosh w \sinh t)^{2}} \\
\mu_{1}^{\{3 ; 1\}}=\mu_{2}^{\{3 ; 1\}}=\frac{-1}{2 s}, \mu_{3}^{\{3 ; 1\}}=-\frac{3(\sqrt{21}+14 s \cosh w \sinh t) \cosh w \sinh t}{(3+2 \sqrt{21} s \cosh w \sinh t)^{2}}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
K^{\{3 ;-1\}}=-\frac{5(-\sqrt{35}+14 s \cosh w \sinh t) \cosh w \sinh t}{4 s^{2}(5-2 \sqrt{35} s \cosh w \sinh t)^{2}} \tag{87}\\
H^{\{3 ;-1\}}=-\frac{1}{3}\left(\frac{1}{s}+\frac{5(-\sqrt{35}+14 s \cosh w \sinh t) \cosh w \sinh t}{(5-2 \sqrt{35} s \cosh w \sinh t)^{2}}\right) \\
\mu_{1}^{\{3 ;-1\}}=\mu_{2}^{\{3 ;-1\}}=\frac{1}{2 s}, \mu_{3}^{\{3 ;-1\}}=\frac{5(-\sqrt{35}+14 s \cosh w \sinh t) \cosh w \sinh t}{(5-2 \sqrt{35} s \cosh w \sinh t)^{2}}
\end{array}\right.
$$

respectively. In the following figures, one can see the projections of the canal hypersurfaces (84) and (85) for $w=2$ and $r(s)=2 s$ into $x_{2} x_{3} x_{4}$-spaces in (A) and (B) in Figure 2, respectively.

Figure 2.

Acknowledgment. The authors would like to gratefully thank the referee for the constructive comments and recommendations which definitely helped to improve the readability and quality of the paper.

References

[1] M. Akyiğit, K. Eren, and H. H. Kösal, Tubular surfaces with modified orthogonal frame in Euclidean 3-space, Honam Math. J. 43 (2021), no. 3, 453-463. https://doi.org/10. 5831/HMJ. 2021.43.3.453
[2] M. Altın and A. Kazan, Rotational hypersurfaces in Lorentz-Minkowski 4-space, Hacet. J. Math. Stat. 50 (2021), no. 5, 1409-1433. https://doi.org/10.15672/hujms. 826596
[3] M. Altın, A. Kazan, and H. B. Karadağ, Monge hypersurfaces in Euclidean 4-space with density, J. Polytechnic 23 (2020), no. 1, 207-214.
[4] M. Altın, A. Kazan, and D. W. Yoon, 2-ruled hypersurfaces in Euclidean 4-space, J. Geom. Phys. 166 (2021), Paper No. 104236, 13 pp. https://doi.org/10.1016/j. geomphys. 2021.104236
[5] S. Aslan and Y. Yayl, Canal surfaces with quaternions, Adv. Appl. Clifford Algebr. 26 (2016), no. 1, 31-38. https://doi.org/10.1007/s00006-015-0602-5
[6] M. E. Aydın and I. Mihai, On certain surfaces in the isotropic 4-space, Math. Commun. 22 (2017), no. 1, 41-51.
[7] F. Doğan and Y. Yaylı, Tubes with Darboux frame, Int. J. Contemp. Math. Sci. 7 (2012), no. 13-16, 751-758.
[8] X. Fu, S. D. Jung, J. Qian, and M. Su, Geometric characterizations of canal surfaces in Minkowski 3-space \mathbb{I}, Bull. Korean Math. Soc. 56 (2019), no. 4, 867-883. https: //doi.org/10.4134/BKMS.b180643
[9] R. A. Garcia, J. Llibre, and J. Sotomayor, Lines of principal curvature on canal surfaces in \mathbb{R}^{3}, An. Acad. Brasil. Ciênc. 78 (2006), no. 3, 405-415.
[10] E. Güler, Helical hypersurfaces in Minkowski geometry E 1_{1}^{4}, Symmetry 12 (2020), no. 8, 1206.
[11] E. Hartman, Geometry and Algorithms for Computer Aided Design, Dept. of Math. Darmstadt Univ. of Technology, 2003.
[12] S. Izumiya and M. Takahashi, On caustics of submanifolds and canal hypersurfaces in Euclidean space, Topology Appl. 159 (2012), no. 2, 501-508. https://doi.org/10. 1016/j.topol.2011.09.025
[13] M. K. Karacan and B. Bükcü, An alternative moving frame for a tubular surface around a spacelike curve with a spacelike normal in Minkowski 3-space, Rend. Circ. Mat. Palermo (2) 57 (2008), no. 2, 193-201. https://doi.org/10.1007/s12215-008-0013-8
[14] M. K. Karacan, H. Es, and Y. Yaylı, Singular points of tubular surfaces in Minkowski 3-space, Sarajevo J. Math. 2 (2006), no. 1, 73-82.
[15] M. K. Karacan and Y. Tunçer, Tubular surfaces of Weingarten types in Galilean and pseudo-Galilean, Bull. Math. Anal. Appl. 5 (2013), no. 2, 87-100.
[16] M. K. Karacan, D. W. Yoon, and Tunçer, Tubular surfaces of Weingarten types in Minkowski 3-space, Gen. Math. Notes 22 (2014), no. 1, 44-56.
[17] A. Kazan, M. Altın, and D. W. Yoon, Geometric characterizations of canal hypersurfaces in Euclidean spaces, Filomat 37 (2023), no. 18, 5909-5920.
[18] Y. H. Kim, H. Liu, and J. H. Qian, Some characterizations of canal surfaces, Bull. Korean Math. Soc. 53 (2016), no. 2, 461-477. https://doi.org/10.4134/BKMS. 2016. 53.2.461
[19] I. Kişi, G. Öztürk, and K. Arslan, A new type of canal surface in Euclidean 4-space E^{4}, Sakarya Univ. J. Sci. 23 (2019), no. 5, 801-809.
[20] S. Kızıltuğ, M. Dede, and C. Ekici, Tubular surfaces with Darboux frame in Galilean 3-space, Facta Univ. Ser. Math. Inform. 34 (2019), no. 2, 253-260.
[21] S. N. Krivoshapko and C. A. B. Hyeng, Classification of cyclic surfaces and geometrical research of canal surfaces, Int. J. Res. Rev. Appl. Sci. 12 (2012), no. 3, 360-374.
[22] W. Kühnel, Differential geometry: curves-surfaces-manifolds, American Mathematical Soc., Braunschweig, Wiesbaden, 1999. https://doi.org/10.1007/978-3-322-93981-4
[23] J. M. Lee, Riemannian Manifolds, Graduate Texts in Mathematics, 176, Springer, New York, 1997. https://doi.org/10.1007/b98852
[24] T. Maekawa, N. M. Patrikalakis, T. Sakkalis, and G. Yu, Analysis and applications of pipe surfaces, Comput. Aided Geom. Design 15 (1998), no. 5, 437-458. https://doi. org/10.1016/S0167-8396(97)00042-3
[25] M. Peternell and H. Pottmann, Computing rational parametrizations of canal surfaces, J. Symbolic Comput. 23 (1997), no. 2-3, 255-266. https://doi.org/10.1006/jsco. 1996.0087
[26] J. Qian, M. Su, X. Fu, and S. D. Jung, Geometric characterizations of Canal surfaces in Minkowski 3-space II, Mathematics 7 (2019), no. 8, 703.
[27] J. S. Ro and D. W. Yoon, Tubes of Weingarten type in a Euclidean 3-space, J. Chungcheong Math. Soc. 22 (2009), no. 3, 359-366.
[28] A. Uçum and K. İlarslan, New types of canal surfaces in Minkowski 3-space, Adv. Appl. Clifford Algebr. 26 (2016), no. 1, 449-468. https://doi.org/10.1007/s00006-015-0556-7
[29] J. Walrave, Curves and surfaces in Minkowski space, Dissertation, K. U. Leuven, Fac. of Science, Leuven, 1995.
[30] Z. Xu, R. Z. Feng, and J. G. Sun, Analytic and algebraic properties of canal surfaces, J. Comput. Appl. Math. 195 (2006), no. 1-2, 220-228. https://doi.org/10.1016/j.cam. 2005.08.002
[31] D. W. Yoon and Z. K. Yüzbaşı, Tubular surfaces with Galilean Darboux frame in G_{3}, J. Math. Phys. Anal. Geom. 15 (2019), no. 2, 278-287. https://doi.org/10.15407/ $\operatorname{mag} 15.02 .278$

Mustafa Altin
Technical Sciences Vocational School
Bingöl University
Bingöl 12000, Türkiye
Email address: maltin@bingol.edu.tr
Ahmet Kazan
Department of Computer Technologies
Malatya Turgut Özal University
Malatya 44210, Türkiye
Email address: ahmet.kazan@ozal.edu.tr
Dae Won Yoon
Department of Mathematics Education and RINS
Gyeongsang National University
Jinju 52828, Korea
Email address: dwyoon@gnu.ac.kr

[^0]: Received September 30, 2022; Revised May 9, 2023; Accepted May 31, 2023.
 2020 Mathematics Subject Classification. Primary 53A35, 53B30.
 Key words and phrases. Canal hypersurface, tubular hypersurface, Lorentz-Minkowski 4-space, Weingarten hypersurface.

