DOI QR코드

DOI QR Code

RELATIONSHIP BETWEEN THE STRUCTURE OF A FACTOR RING R/P AND DERIVATIONS OF R

  • Karim Bouchannafa (Department of Mathematics Faculty of Science and Technology, Box 2202 Sidi Mohamed Ben Abdellah University-Fez) ;
  • Moulay Abdallah Idrissi (Department of Mathematics and Informatics Polydisciplinary Faculty, Box 592 Sidi Mohamed Sultan Moulay Slimane University-Beni Mellal) ;
  • Lahcen Oukhtite (Department of Mathematics Faculty of Science and Technology, Box 2202 Sidi Mohamed Ben Abdellah University-Fez)
  • 투고 : 2022.09.21
  • 심사 : 2023.02.10
  • 발행 : 2023.09.30

초록

The purpose of this paper is to study the relationship between the structure of a factor ring R/P and the behavior of some derivations of R. More precisely, we establish a connection between the commutativity of R/P and derivations of R satisfying specific identities involving the prime ideal P. Moreover, we provide an example to show that our results cannot be extended to semi-prime ideals.

키워드

참고문헌

  1. S. Ali and S. L. Huang, On derivations in semiprime rings, Algebr. Represent. Theory 15 (2012), no. 6, 1023-1033. https://doi.org/10.1007/s10468-011-9271-9
  2. N. Argac, On prime and semiprime rings with derivations, Algebra Colloq. 13 (2006), no. 3, 371-380. https://doi.org/10.1142/S1005386706000320
  3. M. Ashraf and N. Rehman, On derivation and commutativity in prime rings, East-West J. Math. 3 (2001), no. 1, 87-91.
  4. M. Ashraf and N. Rehman, On commutativity of rings with derivations, Results Math. 42 (2002), no. 1-2, 3-8. https://doi.org/10.1007/BF03323547
  5. H. E. Bell and M. N. Daif, On derivations and commutativity in prime rings, Acta Math. Hungar. 66 (1995), no. 4, 337-343. https://doi.org/10.1007/BF01876049
  6. H. E. Bell and W. S. Martindale III, Centralizing mappings of semiprime rings, Canad. Math. Bull. 30 (1987), no. 1, 92-101. https://doi.org/10.4153/CMB-1987-014-x
  7. K. Bouchannafa, M. Abdallah Idrissi, and L. Oukhtite, Relationship between the structure of a quotient ring and the behavior of certain additive mappings, Commun. Korean Math. Soc. 37 (2022), no. 2, 359-370. https://doi.org/10.4134/CKMS.c210126
  8. M. N. Daif, Commutativity results for semiprime rings with derivations, Int. J. Math. Math. Sci. 21 (1998), no. 3, 471-474. https://doi.org/10.1155/S0161171298000660
  9. M. N. Daif and H. E. Bell, Remarks on derivations on semiprime rings, Int. J. Math. Math. Sci. 15 (1992), no. 1, 205-206. https://doi.org/10.1155/S0161171292000255
  10. N. J. Divinsky, On commuting automorphisms of rings, Trans. Roy. Soc. Canada Sect. III 49 (1955), 19-22.
  11. I. N. Herstein, A note on derivations, Canad. Math. Bull. 21 (1978), no. 3, 369-370. https://doi.org/10.4153/CMB-1978-065-x
  12. M. Hongan, A note on semiprime rings with derivation, Int. J. Math. Math. Sci. 20 (1997), no. 2, 413-415. https://doi.org/10.1155/S0161171297000562
  13. M. A. Idrissi and L. Oukhtite, Structure of a quotient ring R/P with generalized derivations acting on the prime ideal P and some applications, Indian J. Pure Appl. Math. 53 (2022), no. 3, 792-800. https://doi.org/10.1007/s13226-021-00173-x
  14. L. Oukhtite, Posner's second theorem for Jordan ideals in rings with involution, Expo. Math. 29 (2011), no. 4, 415-419. https://doi.org/10.1016/j.exmath.2011.07.002
  15. L. Oukhtite, A. Mamouni, and M. Ashraf, Commutativity theorems for rings with differential identities on Jordan ideals, Comment. Math. Univ. Carolin. 54 (2013), no. 4, 447-457.
  16. E. C. Posner, Derivations in prime rings, Proc. Amer. Math. Soc. 8 (1957), 1093-1100. https://doi.org/10.2307/2032686