참고문헌
- Ariono, D., Aryanti, P.T.P., Wardani, A.K. and Wenten, I.G. (2018), "Fouling characteristics of humic substances on tight polysulfone-based ultrafiltration membrane", Membr. Water Treat., 9(5), 353-361. https://doi.org/10.12989/mwt.2018.9.5.353
- Baker, L.A. and Bird, S.P. (2008), "Nanopores: A makeover for membranes", Nature Nanotech., 3, 73-74. https://doi.org/10.1038/nnano.2008.13
- Bottino, A., Capannelli, G., Comite, A., Ferrari, F. and Firpo, R. (2011), "Water purification from pesticides by spiral wound nanofiltration membrane", Membr. Water Treat., 2(1), 63-74. http://doi.org/10.12989/mwt.2011.2.1.063
- Brown, C.E., Everett, D.H., Powell, A.V. and Thome, P.E. (1975), "Adsorption and structuring phenomena at the solid/liquid interface", Faraday Discus. Chem. Soc., 59, 97-108. https://doi.org/10.1039/DC9755900097
- Cadotte, J.E., Petersen, R.J., Larson, R.E. and Erickson, E.E. (1980), "A new thin film composite seawater reverse osmosis membrane", Desalination, 32, 25-31. https://doi.org/10.1016/S0011-9164(00)86003-8
- Cohen-Tanugi, D., Lin, L.C. and Grossman, J.C. (2016), "Multilayer nanoporous graphene membranes for water desalination", Nano Lett., 16, 1027. https://doi.org/10.1021/acs.nanolett.5b04089
- Elizabeth, E.M.O., Barbosa, C.C.R. and Afonso, J.C. (2012), "Selectivity and structural integrity of a nanofiltration membrane for treatment of liquid waste containing uranium", Membr. Water Treat., 3, 231-242. http://doi.org/10.12989/mwt.2012.3.4.231
- El-ghzizel, S., Jalte, H., Zeggar, H., Zait, M., Belhamidi, S., Tiyal, F., Hafsi, M., Taky, M. and Elmidaoui, A. (2019), "Autopsy of nanofiltration membrane of a decentralized demineralization plant", Membr. Water Treat., 10, 277-286. https://doi.org/0.12989/mwt.2019.10.4.277 https://doi.org/10.4.277
- Fissel, W.H., Dubnisheva, A., Eldridge, A.N., Fleischman, A.J., Zydney, A.L. and Roy, S. (2009), "High-performance silicon nanopore hemofiltration membranes", J. Membr. Sci., 326, 58-63. http://doi.org/10.1016/j.memsci.2008.09.039
- Harrell, C.C., Siwy, Z.S. and Martin, C.R. (2006), "Conical nanopore membranes: Controlling the nanopore shape", Small, 2, 157. https://doi.org/10.1002/smll.200690004
- Huang, L., Zhang, M., Li, C. and Shi, G. (2015), "Graphene-based membranes for molecular separation", J. Phys. Chem. Lett., 6, 2806-2815. https://doi.org/10.1021/acs.jpclett.5b00914
- Holt, J.K., Park, H.G., Wang, Y., Staermandn, M., Artyukhin, A. B., Grigoropoulos, C.P., Noy, A. and Bakajin, O. (2006), "Fast mass transport through sub-2-nanometer carbon nanotubes", Science, 312, 1034-1037. https://doi.org/10.1126/science.1126298
- Itoh, Y., Chen, S., Hirahara, R., Konda, T., Aoki, T., Ueda, T., Shimada, I., Cannon, J. J., Shao, C., Shiomi, J., Tabata, K.V., Noji, H., Sato, K., and Aida, T. (2022), "Ultrafast water permeation through nanochannels with a densely fluorous interior surface", Science, 376, 738-743. https://doi.org/10.1126/science.abd0966
- Jackson, E.A. and Hillmyer, M.A. (2010), "Nanoporous membranes derived from block copolymers: From drug delivery to water filtration", ACS Nano, 4, 3548-3553. http://doi.org/10.1021/nn1014006
- Jang, D., Idrobo, J.C., Laoui, T. and Karnik, R. (2017), "Water and solute transport governed by tunable pore size distributions in nanoporous graphene membranes", ACS Nano, 10042. https://doi.org/10.1021/acsnano.7b04299
- Jin, Y., Choi, Y., Song, K.G., Kim, S. and Park, C. (2019), "Iron and manganese removal in direct anoxic nanofiltration for indirect potable reuse", Membr. Water Treat., 10(4), 299-305. https://doi.org/0.12989/mwt.2019.10.4.299 https://doi.org/10.4.299
- Kannam, S.K., Todd, B.D., Hansen, J.S. and Daivis, P.J. (2013), "How fast does water flow in carbon nanotubes?", J. Chem. Phys., 138, 094701. http://doi.org/10.1063/1.4793396
- Kim, D.W., Choi, J., Kim, D. and Jung, H.T. (2016), "Enhanced water permeation based on nanoporous multilayer graphene membranes: The role of pore size and density", J. Mater. Chem. A, 4(45), 17773-17781. https://doi.org/10.1039.C6TA06381K. https://doi.org/10.1039.C6TA06381K
- Koklu, A., Li, J., Sengor, S. and Beskok, A. (2017), "Pressure‑driven water flow through hydrophilic alumina nano-membranes", Microfluid. Nanofluid., 21, 124. https://doi.org/10.1007/s10404-017-1960-1
- Lan, W.J., Holden, D.A., Liu, J. and White, H.S. (2015), "Pressure-driven nanoparticle transport across glass membranes containing a conical-shaped nanopore", J. Phys. Chem. C, 115, 18445-18452. https://doi.org/10.1021/jp204839j
- Li, J. and Zhang, Y.B. (2021), "Flow equations and their borderlines for different regimes of mass transfer", Front. Heat Mass Transf., 16, 21. https://doi.org/10.5098/hmt.16.21
- Li, N., Yu, S., Harrell, C. and Martin, C.R. (2004), "Conical nanopore membranes: Preparation and transport properties", Anal. Chem., 76, 2025-2030. https://doi.org/10.1021/ac035402e
- Lin, W. and Zhang, Y.B. (2022), "Water permeation through human cell membrane", J. Appl. Mech. Tech. Phys., 63(6), 957-962. https://doi.org/10.1134/S0021894422060062
- Majumder, M., Chopra, N., Andrews, R. and Hinds, B.J. (2005), "Enhanced flow in carbon nanotubes", Nature, 438, 44. https://doi.org/10.1038/438044a
- Nair, R.R., Wu, H.A., Jayaram, P.N., Grigorieva, I.V. and Geim, A.K. (2012), "Unimpeded permeation of water through helium-leak-tight graphene based membranes", Science, 335, 442-444. https://doi.org/10.1126/science.1211694
- Pinkus, O. and Sternlicht, B. (1961), Theory of Hydrodynamic Lubrication, Mc Graw-Hill, New York, U.S.A.
- Sanjay, R., Nagarajan, P., Sabyasachi G., Subhadip M., Suryasarathi, B. and Narayan, D. (2021), "Porous graphene-based membranes: Preparation and properties of a unique two-dimensional nanomaterial membrane for water purification", Separ. Purifi. Rev., 50, 262-282. https://doi.org/10.1080/15422119.2020.1725048
- Sofos, F. (2021), "A water/ion separation device: theoretical and numerical investigation", Appl. Sci., 11, 8548. https://doi.org/10.3390/app11188548
- Stavrogiannis, C., Sofos, F., Karakasidis, T.E. and Vavougios, D. (2022), "Investigation of water desalination/purification with molecular dynamics and machine learning techniques", AIMS Mater. Sci., 9, 919-938. https://doi.org/10.3934/matersci.2022054
- Surwade, S.P., Smirnov, S.N., Vlassiouk, I.V., Unocic, R.R., Veith, G.M., Dai, S. and Mahurin, S.M. (2015), "Water desalination using nanoporous single-layer grapheme", Nature Nanotech., 10, 459-464. https://doi.org/10.1038/nnano.2015.37
- Tiraferri, A., Yip, N.Y., Phillip, W.A., Schiffman, J.D. and Elimelech, M. (2011), "Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure", J. Membr. Sci., 367, 340-352. https://doi.org/10.1016/j.memsci.2010.11.014
- Wang, L., Dumont, R. and Dickson, J.M. (2012), "Nonequilibrium molecular dynamics simulation of water transport through carbon nanotube membranes at low pressure", J. Chem. Phys., 137, 044102. https://doi.org/10.1063/1.4734484
- Wang, M. and Zhang, Y.B. (2021), "Water transport in cellular connexon of human bodies", Front. Heat Mass Transf., 17, 9. http://doi.org/10.5098/hmt.17.9
- Yang, S.Y., Ryu, I., Kim, H.Y., Kim, J.K., Jang, S.K. and Russell, T.P. (2006), "Nanoporous membranes with ultrahigh selectivity and flux for the filtration of viruses", Adv. Mater., 18, 709-712. https://doi.org/10.1002/adma.200501500
- Yip, N.Y., Tiraferri, A., Phillip, W.A., Schiffman, J.D. and Elimelech, M. (2010), "High performance thin-film composite forward osmosis membrane", Environ. Sci. Technol., 44, 3812-3818. https://doi.org/10.1021/es1002555
- Zhang, Y.B. (2014), "Review of hydrodynamic lubrication with interfacial slippage", J. Balkan Trib. Assoc., 20, 522-538.
- Zhang, Y.B. (2016), "The flow equation for a nanoscale fluid flow", Int. J. Heat Mass Transf., 92, 1004-1008. https://doi.org/10.1016/j.ijheatmasstransfer.2015.09.008
- Zhang, Y.B. (2017), "Transport in nanotube tree", Int. J. Heat Mass Transf., 114, 536-540. https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.105
- Zhang, Y.B. (2018), "Optimum design for cylindrical-shaped nanoporous filtration membrane", Int. Commun. Heat Mass Transf., 96, 130-138. https://doi.org/10.1016/j.icheatmasstransfer.2018.06.003
- Zhang, Y.B. (2019a), "Performance of nanoporous filtration membrane with conical pores: For a liquid-particle separation", Front. Heat Mass Transf., 12, 14. https://doi.org/10.5098/hmt.12.14
- Zhang, Y.B. (2019b), "Exploring the maximum number of the branch pores in each pore tree applied in an optimized tree-type cylindrical-shaped nanoporous filtering membrane", Curr. Nanosci., 15, 1-5. https://doi.org/10.2174/1573413714666180911100344
- Zhang, Y.B. (2019c), "Optimized tree-type cylindrical-shaped nanoporous filtering membranes with 3 or 5 branch pores in each pore tree", Current Nanosci., 15, 647-53. https://doi.org/10.2174/1573413714666181012122839
- Zhang, Y.B. (2020), "Modeling of flow in a very small surface separation", Appl. Math. Mod., 82, 573-586. https://doi.org/10.1016/j.apm.2020.01.069