DOI QR코드

DOI QR Code

Modelling creep behavior of soft clay by incorporating updated volumetric and deviatoric strain-time equations

  • Chen Ge (Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University) ;
  • Zhu Jungao (Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University) ;
  • Li Jian (Chengdu Engineering Corporation Limited) ;
  • Wu Gang (Huaneng Tibet Yarlungzangbo River Hydropower Development and Investment Co. Ltd) ;
  • Guo Wanli (Geotechnical Engineering Department, Nanjing Hydraulic Research Institute)
  • 투고 : 2023.02.23
  • 심사 : 2023.08.28
  • 발행 : 2023.10.10

초록

Soft clay is widely spread in nature and encountered in geotechnical engineering applications. The creep property of soft clay greatly affects the long-term performance of its upper structures. Therefore, it is vital to establish a reasonable and practical creep constitutive model. In the study, two updated hyperbolic equations based on the volumetric creep and deviatoric creep are respectively proposed. Subsequently, three creep constitutive models based on different creep behavior, i.e., V-model (use volumetric creep equation), D-model (use deviatoric creep equation) and VD-model (use both volumetric and deviatoric creep equations) are developed and compared. From the aspect of prediction accuracy, both V-model and D-model show good agreements with experimental results, while the predictions of the VD-model are smaller than the experimental results. In terms of the parametric sensitivity, D-model and VD-model are lower sensitive to parameter M (the slope of the critical state line) than V-model. Therefore, the D-model which is developed by incorporating the updated deviatoric creep equation is suggested in engineering applications.

키워드

과제정보

The research described in this paper was financially supported by the Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX22_0623), the scientific project from Huaneng company Headquarters (HNKJ20-H45), 111 Project (No. B13024) and the Open Sharing Fund for the Large-scale Instruments of Hohai University (GX202205B, GX202204B).

참고문헌

  1. Acharya, M.P., Hendry, M.T. and Martin, C.D. (2018), "Creep behavior of intact and remold fibrous peat", Acta Geotechnica, 13, 399-417. https://doi.org/10.1007/s11440-017-0545-1.
  2. Bi, G., Ren, C., Xu, H.Z. and Jiang, D.Q. (2022), "Creep behavior of cohesive soils associated with different plasticity indexes", Environ. Earth Sci., 81, 151. https://doi.org/10.1007/s12665-022-10271-6.
  3. Borja, R.I. and Kavazanjian, Jr, E. (1985), "A constitutive model for the stress-strain-time behavior for "wet" clays", Geotechnique, 35(3), 183-198. https://doi.org/10.1680/geot.1985.35.3.283.
  4. Borja, R.I. (1992), "Generalized creep and stress relaxation model for clays", J. Geotech. Eng. (ASCE), 118(11), 1765-1786. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:11(1765).
  5. Chen, B., Xu, Q. and Sun, D.A. (2014), "An elastoplastic model for structured clays", Geomech. Eng., 7(2), 213-231. https://doi.org/ 10.12989/gae.2014.7.2.213.
  6. Chen, X.P., Huang, G.Y. and Liang, Z.S. (2003), "Study on soft properties of the pearl river delta", Chinese J. Rock Mech. Eng., 1, 137-141. https://doi.org/1000-6915(2003)01-0137-05. (in Chinese). 1000-6915(2003)01-0137-05
  7. Chen, Z.J., Feng, W.Q. and Yin, J.H. (2021), "A new simplified method for calculating short-term and long-term consolidation settlements of multi-layered soils considering creep limit", Comput. Geotech., 138(2021), 104324. https://doi.org/10.1016/j.compgeo.2021.104324.
  8. Dong, W.J. (2007), "Study on the laboratory test of rheological characteristic of soft clay and long-term strength", PH.D. Dissertation, Hohai University, Nanjing, Jiangsu, China.
  9. Freitas, T., Potts, D.M. and Zdravkovic, L. (2011), "A time dependent constitutive model for soils with isotach viscosity", Comput. Geotech., 38(6), 809-820. https://doi.org/10.1016/j.compgeo.2011.05.008.
  10. Hessam, Y. and Mohammad, M.T. (2012), "Nonlinear consolidation of soft clays subjected to cyclic loading-part II: verification and application", Geomech. Eng., 4(4), 243-249. https://doi.org/10.12989/gae.2012.4.4.243.
  11. Hsieh, H.S., Kavazanjian, E.J. and Borja, R.I. (1990), "Double-yield-surface cam-clay plasticity model. i: theory", J. Geotech. Eng., 116(9). https://doi.org/10.1061/(ASCE)0733-9410(1990)116:9(1381).
  12. Hu, J.L. (2013), "The study of creep characteristics for soft clay and its application on calculation of long-term subgrade settlement", PH.D. Dissertation, Hohai University, Nanjing, Jiangsu, China.
  13. Jiang, Y.Q. and Mu, X.Y. (1984), Plastic Mechanics Foundation, China Machine Press, Beijing, China.
  14. Kavvadas, M. and Kalos, A. (2019), "A time-dependent plasticity model for structured soils (TMS) simulating drained tertiary creep", Comput. Geotech., 109, 130-143. https://doi.org/10.1016/j.compgeo.2019.01.022
  15. Li, C. (2019), "Study on the loading and deformation of tunnel segments in soft clay with consideration for the soil mass rheological characteristics", Geotech. Geol. Eng., 37(2), 1-10. https://doi.org/10.1007/s10706-018-0637-1.
  16. Liu, W.Z., Shi, Z.G., Zhang, J.H. and Zhang, D.W. (2019), "One-dimensional nonlinear consolidation behavior of structured soft clay under time-dependent loading", Geomech. Eng., 18(3), 299-313. https://doi.org/ 10.12989/gae.2019.18.3.299.
  17. Liu, Y.F. (2020), "Experimental study on consolidation rheological properties of Cangzhou coastal", PH.D. Dissertation, North China University of Water Resources and Electric Power. Zhengzhou, Henan, China.
  18. Liu, Y.H. (2008), "Study on engineering property and application of constitutive model for Ningbo soft clay", Ph.D. Dissertation, Zhe Jiang University, Hangzhou, Zhejiang, China.
  19. Long, Z.L., Cheng, Y.Z., Yang, G.Y., Dong, Y. and Xu, Y.L. (2021), "Study on triaxial creep test and constitutive model of compacted red clay", Int. J. Civil Eng., 19, 517-531. https://doi.org/10.1007/s40999-020-00572-x.
  20. Mesri, G., Eehres-Cordero, E. and Shields, D.R. (1981), "Shear stress-strain-time behaviour of clays", Geotechnique, 31(4), 537-552. https://doi.org/10.1680/geot.1981.31.4.537.
  21. Morsy, M.M., Chan, D.H. and Morgenstern, N.R. (1995), "An effective stress model for creep of clay", Can. Geotech. J., 32(5), 819-834. https://doi.org/10.1139/t95-079
  22. Oliveira, P., Santos, S.L., Correia, A. and Lemos, L. (2019), "Numerical prediction of the creep behaviour of an embankment built on soft soils subjected to preloading", Comput. Geotech., 114, 103140. https://doi.org/10.1016/j.compgeo.2019.103140.
  23. Perzyna, P. (1966), "Fundamental problems in viscoplasticity", Adv. Appl. Mech., 9(2), 243-377. https://doi.org/10.1016/S0065-2156(08)70009-7.
  24. Qiao, Y., Ferrari, A., Laloui, L. and Ding, W. (2016), "Nonstationary flow surface theory for modeling the viscoplastic behaviors of soils", Comput. Geotech., 76, 105-119. https://doi.org/10.1016/j.compgeo.2016.02.015.
  25. Ramadhika, F., Kristyanto, T., Indra, T.L. and Syahputra, R. (2018), "The responsibility of high activity clay mineral toward landslide occurrence in volcanic sediment area, Cianjur", Proceedings of the 3rd international symposium on current progress in mathematics and sciences 2017 (iscpms2017).
  26. Rezania, M., Taiebat, M. and Poletti, E. (2016), "A viscoplastic SANICLAY model for natural soft soils", Comput. Geotech., 73, 128-141. https://doi.org/10.1016/j.compgeo.2015.11.023.
  27. Roscoe, K.H. and Burland, J.B. (1968), Engineering Plasticity, Cambridge University Press, Cambridge, England.
  28. Singh, A. and Mitchell, J.K. (1968), "General stress-strain-time function for soils", J. Soil Mech. Found. Division, 94(1), 21-46. https://doi.org/10.1061/JSFEAQ. 0001084.
  29. Taylor, D.W. (1948), Fundamentals of Soil Mechanics, Wiley and Sons, New York, America.
  30. Thu, M.L., Behzad, F., Mahdi, D. and Hadi, K. (2015), "Analyzing consolidation data to obtain elastic viscoplastic parameters of clay", Geomech. Eng., 8(4), 559-594. https://doi.org/10.12989/gae.2015.8.4.559.
  31. Venda Oliveira, P.J., Santos, S.L., Correia, A.A.S. and Lemos, L.J.L. (2019), "Numerical prediction of the creep behaviour of an embankment built on soft soils subjected to preloading", Comput. Geotech., 114, 103140.
  32. von Mises, R. (1913), "Mechanik der festen Korper im plastisch deformablen Zustand. Nachrichten von der Koniglichen Gesellschaft der Wissenschaften zu Goettingen", Mathematisch-physikalische Klasse, (1) 582-592.
  33. Yao, Y.P., Kong, L.M. and Zhou, A.N. (2015), "Time-dependent unified hardening model: three-dimensional elasto-visco-plastic consti- tutive model for clays", J. Eng. Mech., 141(6). https://doi.org/10.1061/(ASCE)EM.1943-7889.0000885.
  34. Yin, J.H. and Graham, J. (1989), "Viscous-elastic-plastic modelling of one dimensional time-dependent behavior of clays", Can. Geotech. J., 26, 199-209. https://doi.org/10.1139/t89-029.
  35. Yin, J.H. and Graham, J. (1994), "Equivalent times and one-dimensional elastic visco-piastic modelling of time-dependent stress-strain behavior of clays", Can. Geotech. J., 31, 42-52. https://doi.org/10.1016/0148-9062(94)90219-4.
  36. Yin, J.H. (1999), "Equivalent time and elastic visco-plastic models for geomaterials", Chinese J. Rock Mech. Eng., 18(2), 124-128.
  37. Yin, Q., Zhao, Y., Gong, W.M., Dai, G.L., Zhu, M.X., Zhu, W.B. and Xu, F. (2023), "A fractal order creep-damage constitutive model of silty clay", Acta Geotechnica, 18, 3997-4016. https://doi.org/10.1007/s11440-023-01815-6.
  38. Zhao, T.B., Zhang, Y.B., Zhang, Q.Q. and Tan, Y.L. (2018), "Analysis on the creep response of bolted rock using bolted burgers model", Geomech. Eng., 14(2), 141-149. https://doi.org/10.12989/gae.2018.14.2.141.
  39. Zhu, H.H., Chen, X.P., Cheng, X.J. and Zhang, B. (2006), "Study on creep characteristics and model of soft soil considering drainage condition", Rock Soil Mech., 27(5), 694-698. https://doi.org/10.16285/j.rsm.2006.05.003.
  40. Zhu, Q.Y., Jin, Y.F. and Yin, Z.Y. (2019), "Modeling of embankment beneath marine deposited soft sensitive clays considering straightforward creep degradation", Mar. Georesour. Geotec., (5), 1-17. https://doi.org/10.1080/1064119X.2019.1603254.
  41. Zhu, Q.Y., Yin, Z.Y., Xu, C.J., Yin, J.H. and Xia, X.H. (2015), "Uniqueness of rate-dependency, creep and stress relaxation behaviors for soft clays", J. Central South Univ., 22(1), 296-302. https://doi.org/10.1007/s11771-015-2521-y.