DOI QR코드

DOI QR Code

The effects of algal-derived organic matters (AOMs) and chlorinated AOMs on the survival and behavior of zebrafish

  • Se-Hyun Oh (Department of Civil and Environmental Engineering, Daejeon University) ;
  • Jing Wang (Research and Development Department, CanFit Resource Technologies Inc.) ;
  • Jung Rae Kim (School of Chemical Engineering, Pusan National University) ;
  • Yunchul Cho (Department of Civil and Environmental Engineering, Daejeon University)
  • 투고 : 2023.07.17
  • 심사 : 2023.08.24
  • 발행 : 2023.05.25

초록

Algal organic matters (AOMs) are challenging to remove using traditional water treatment methods. Additionally, they are recognized as disinfection by product (DBP) precursors during the chlorination process. These compounds have the potential to seriously harm aquatic creatures. Despite the fact that AOMs and DBPs formed from algae can harm aquatic species by impairing their cognitive function and causing behavioral problems, only a few studies on the effects of AOMs and associated DBPs have been conducted. To assess the impact of extracellular organic materials (EOMs) produced by three different hazardous algal species and the chlorinated EOMs on zebrafish, this study used fish acute embryo toxicity (FET) and cognitive function tests. With rising EOM concentrations, the embryo's survival rate and mental capacity both declined. Of the three algal species, the embryo exposed to Microcystis aeruginosa EOM exhibited the lowest survival rate. On the other hand, the embryo exposed to EOMs following chlorination demonstrated a drop in CT values in both the survival rate and cognitive ability. These findings imply that EOMs and EOMs treated with chlorine may have detrimental effects on aquatic life. Therefore, an effective EOM management is needed in aquatic environment.

키워드

과제정보

This research was supported by the Daejeon University Research Grants (2020).

참고문헌

  1. Ali, S., Champagne, D.L., Spaink, H.P., and Richardson, M.K. (2011), "Zebrafish embryos and larvae: A new generation of disease models and drug screens", Birth Defects Res., 93(2), 115-133. https://doi.org/10.1002/bdrc.20206
  2. Avdesh, A., Chen, M., Martin-Iverson, M.T., Mondal, A., Ong, D., Rainey-Smith, S., Taddei, K., Lardelli, M., Groth, D.M., Verdile, G. and Martins, R.N. (2012). "Regular care and maintenance of a zebrafish (Danio rerio) laboratory: An introduction", J. Visual. Experim., 69, 4196. https://doi.org/10.3791/4196
  3. Bader, H. and Hoigne, J. (1981), "Determination of ozone in water by the indigo method", Water Res., 15(4), 449-456. https://doi.org/10.1016/0043-1354(81)90054-3
  4. Bai, W., Zhang, Z.Y., Tian, W.J., He, X., Ma, Y., Zhao, Y. and Chai, Z. (2010), "Toxicity of zinc oxide nanoparticles to zebrafish embryo: A physicochemical study of toxicity mechanism", J. Nanopart. Res., 12(5), 1645-1654. https://doi.org/10.1007/s11051-009-9740-9
  5. Berry, J.P., Gantar, M., Gibbs, P.D.L. and Schmale, M.C. (2007), "The zebrafish (Danio rerio) embryo as a model system for identification and characterization of developmental toxins from marine and freshwater microalgae", Comparative Biochem. Physiol. C, 145(1), 61-72. https://doi.org/10.1016/j.cbpc.2006.07.011
  6. Chen, J., Gao, N., Li, L., Zhu, M., Yang, J., Lu, X. and Zhang, Y. (2017), "Disinfection by-product formation during chlor(am) ination of algal organic matters (AOM) extracted from Microcystis aeruginosa: effect of growth phases, AOM and bromide concentration", Environ Sci Pollut Res, 24, 8469-8478. https://doi.org/10.1007/s11356-017-8515-6
  7. Choi, S.K., Lee, J.Y., Kwon, D.Y. and Cho, K.J. (2006), "Settling characteristics of problem algae in the water treatment process", Water Sci Technol, 53(7), 113-119. https://doi.org/10.2166/wst.2006.214
  8. Colwill, R.M., Raymond, M.P., Ferreira, L. and Escudero, H. (2005), "Visual discrimination learning in zebrafish (Danio rerio)", Behav. Proc., 70(1), 19-31. https://doi.org/10.1016/j.beproc.2005.03.001
  9. Cui, H., Chen, B., Jiang, Y., Tao, Y., Zhu, X. and Cai, Z. (2021), "Toxicity of 17 disinfection by-products to different trophic levels of aquatic organisms: Ecological risks and mechanisms", Environ. Sci. Technol., 55(15), 10534-10541. https://doi.org/10.1021/acs.est.0c08796
  10. Embry, M.R., Belanger, S.E., Braunbeck, T.A., Galay-Burgos, M., Halder, M., Hinton, D.E., Leonard, M.A., Lillicrap, A., Norberg-King, T. and Whale, G. (2010), "The fish embryo toxicity test as an animal alternative method in hazard and risk assessment and scientific research", Aqua. Toxicol., 97(2), 79-87. https://doi.org/10.1016/j.aquatox.2009.12.008
  11. Fang, J., Xin Yang, J.M. and Shang, C. (2010), "Formation of carbonaceous and nitrogenous disinfection by-products from the chlorination of Microcystis aeruginosa", Water Res., 44(6), 1934-1940. https://doi.org/10.1016/j.watres.2009.11.046
  12. Fawell, J. and Nieuwenhuijsen, M.J. (2003), "Contaminants in drinking water: Environmental pollution and health", British Med. Bull., 68(1), 199-208. https://doi.org/10.1093/bmb/ldg027
  13. Goslan, E.H., Seigle, C., Purcell, D., Henderson, R., Parsons, S.A., Jefferson, B. and Judd, S.J. (2017), "Carbonaceous and nitrogenous disinfection by-product formation from algal organic matter", Chemosphere, 170, 1-9. https://doi.org/10.1016/j.chemosphere.2016.11.148
  14. Hong, M.H. (2018), "Characteristics of chlorination byproducts formation by microcystis sp. and coelastrum sp. of hoeya reservoir", Master's Thesis, Pusan National University, Busan, Korea.
  15. Huang, W., Chu, H., Dong, B., Hu, M. and Yu, Y. (2015), "A membrane combined process to cope with algae blooms in water", Desalination, 355, 99-109. https://doi.org/10.1016/j.desal.2014.09.037
  16. Kurobe, T., Lehman, P.W., Haque, M.E., Sedda, T., Lesmeister, S. and Teh, S. (2018), "Evaluation of water quality during successive severe drought years within Microcystis blooms using fish embryo toxicity tests for the San Francisco Estuary, California", Sci. Total Environ., 610-611, 1029-1037. https://doi.org/10.1016/j.scitotenv.2017.07.267
  17. Lei, P., Zhang, J., Zhu, J., Tan, Q., Kwong, R.W.M., Pan, K., Jiang, T., Naderi, M. and Zhong, H. (2021), "Algal organic matter drives methanogen-mediated methylmercury production in water from eutrophic shallow lakes", Environ. Sci. Technol., 55(15), 10811-10820. https://doi.org/10.1021/acs.est.0c08395
  18. Li, L., Gao, N., Deng, Y., Yao, J. and Zhang, K. (2012), "Characterization of intracellular & extracellular algae organic matters (AOM) of Microcystic aeruginosa and formation of AOM-associated disinfection byproducts and odor & taste compounds", Water Res., 46, 1233-1240. https://doi.org/10.1016/j.watres.2011.12.026
  19. Liu, B., Qu, F., Liang, H., Bruggen, B.V.D., Cheng, X., Yu, H., Xu, G. and Li, G. (2017), "Microcystis aeruginosa-laden surface water treatment using ultrafiltration: Membrane fouling, cell integrity and extracellular organic matter rejection", Water Res., 112, 83-92. https://doi.org/10.1016/j.watres.2017.01.033
  20. OECD, (2013), Guideline for the testing of chemicals, test No. 236. Fish Embryo Toxicity (FET) Test. Paris, France.
  21. Paralkar, A. and Edzwald, J.K. (1996), "Effect of ozone on EOM and coagulation", J. AWWA, 88, 143-154. https://doi.org/10.1002/j.1551-8833.1996.tb06540.x
  22. Park, J.S., Ryu, J.H., Choi, T.I., Bae, Y.K., Lee, S., Kang, H.J. and Kim, C.H. (2016), "Innate color preference of zebrafish and its use in behavioral analyses", Mol Cells, 39(10), 750-755. https://doi.org/10.14348/molcells.2016.0173
  23. Pereira, A.C., Gomes, T., Ferreira Machado, F.M. and Rocha, T.L. (2019), "The zebrafish embryotoxicity test (ZET) for nanotoxicity assessment: from morphological to molecular approach", Environ. Pollut., 252, 1841-1853. https://doi.org/10.1016/j.envpol.2019.06.100
  24. Pflugmacher, S. (2002), "Possible allelopathic effects of cyanotoxins, with reference to microcystin-LR, in aquatic ecosystems", Environ. Toxicol., 17, 407-413. https://doi.org/10.1002/tox.10071
  25. Rao, N.R.H., Linge, K.L., Li, X., Joll, C.A., Khan, S.J. and Henderson, R.K. (2023), "Relating algal-derived extracellular and intracellular dissolved organic nitrogen with nitrogenous disinfection by-product formation", Water Res., 233, 119695(1)-119695(11). https://doi.org/10.1016/j.watres.2023.119695
  26. Richardson, S.D., Fasano. F., Ellington, J.J., Crumley, F.G., Buettner, K.M., Evans, J.J., Blount, B.C., Silva, L.K., Waite, T.J., Luther, G.W., Mckague, A.B., Miltner, R.J., Wagner, E.D. and Plewa, M.J. (2008), "Occurrence and mammalian cell toxicity of iodinated disinfection byproducts in drinking water", Environ. Sci. Technol., 42(22), 8330-8338. https://doi.org/10.1021/es801169k
  27. Schulte, C. and Nagel, R. (1994), "Testing acute toxicity in embryo of zebrafish, Brachydanio rerio, as an alternative to the acute fish test-preliminary results", Altern. Lab. Anim., 22(1), 12-19. https://doi.org/10.1177/026119299402200104
  28. Wang, W., Ye, B., Yang, L., Li, Y. and Wang, Y. (2007), "Risk assessment on disinfection by-products of drinking water of different water sources and disinfection processes", Environ. Int., 33(2), 219-225. https://doi.org/10.1016/j.envint.2006.09.009
  29. Yoon, H.J., Kim, M.J., Kim, J.R. and Kim, S.P. (2019), "A study on the behavior change of zebrafish for toxicity evaluation of residual psychoactive medication in wastewater treatment plant effluent", J. Korean Soc. Water Environ., 35(6), 574-579. https://doi.org/10.15681/KSWE.2019.35.6.574
  30. Yoon, H.J., Lim, Y.S., Maeng, S.K., Hong, Y.S., Byun, S.J., Kim, H.C., Kim, B.S. and Kim, S.P. (2020), "Impact of DBPs on the fate of zebrafish, Behavioral and lipid profile changes", Membr. Water Treat., 11(6), 391-398. https://doi.org/10.12989/mwt.2020.11.6.391