Acknowledgement
This research was supported by the Daejeon University Research Grants (2020).
References
- Ali, S., Champagne, D.L., Spaink, H.P., and Richardson, M.K. (2011), "Zebrafish embryos and larvae: A new generation of disease models and drug screens", Birth Defects Res., 93(2), 115-133. https://doi.org/10.1002/bdrc.20206
- Avdesh, A., Chen, M., Martin-Iverson, M.T., Mondal, A., Ong, D., Rainey-Smith, S., Taddei, K., Lardelli, M., Groth, D.M., Verdile, G. and Martins, R.N. (2012). "Regular care and maintenance of a zebrafish (Danio rerio) laboratory: An introduction", J. Visual. Experim., 69, 4196. https://doi.org/10.3791/4196
- Bader, H. and Hoigne, J. (1981), "Determination of ozone in water by the indigo method", Water Res., 15(4), 449-456. https://doi.org/10.1016/0043-1354(81)90054-3
- Bai, W., Zhang, Z.Y., Tian, W.J., He, X., Ma, Y., Zhao, Y. and Chai, Z. (2010), "Toxicity of zinc oxide nanoparticles to zebrafish embryo: A physicochemical study of toxicity mechanism", J. Nanopart. Res., 12(5), 1645-1654. https://doi.org/10.1007/s11051-009-9740-9
- Berry, J.P., Gantar, M., Gibbs, P.D.L. and Schmale, M.C. (2007), "The zebrafish (Danio rerio) embryo as a model system for identification and characterization of developmental toxins from marine and freshwater microalgae", Comparative Biochem. Physiol. C, 145(1), 61-72. https://doi.org/10.1016/j.cbpc.2006.07.011
- Chen, J., Gao, N., Li, L., Zhu, M., Yang, J., Lu, X. and Zhang, Y. (2017), "Disinfection by-product formation during chlor(am) ination of algal organic matters (AOM) extracted from Microcystis aeruginosa: effect of growth phases, AOM and bromide concentration", Environ Sci Pollut Res, 24, 8469-8478. https://doi.org/10.1007/s11356-017-8515-6
- Choi, S.K., Lee, J.Y., Kwon, D.Y. and Cho, K.J. (2006), "Settling characteristics of problem algae in the water treatment process", Water Sci Technol, 53(7), 113-119. https://doi.org/10.2166/wst.2006.214
- Colwill, R.M., Raymond, M.P., Ferreira, L. and Escudero, H. (2005), "Visual discrimination learning in zebrafish (Danio rerio)", Behav. Proc., 70(1), 19-31. https://doi.org/10.1016/j.beproc.2005.03.001
- Cui, H., Chen, B., Jiang, Y., Tao, Y., Zhu, X. and Cai, Z. (2021), "Toxicity of 17 disinfection by-products to different trophic levels of aquatic organisms: Ecological risks and mechanisms", Environ. Sci. Technol., 55(15), 10534-10541. https://doi.org/10.1021/acs.est.0c08796
- Embry, M.R., Belanger, S.E., Braunbeck, T.A., Galay-Burgos, M., Halder, M., Hinton, D.E., Leonard, M.A., Lillicrap, A., Norberg-King, T. and Whale, G. (2010), "The fish embryo toxicity test as an animal alternative method in hazard and risk assessment and scientific research", Aqua. Toxicol., 97(2), 79-87. https://doi.org/10.1016/j.aquatox.2009.12.008
- Fang, J., Xin Yang, J.M. and Shang, C. (2010), "Formation of carbonaceous and nitrogenous disinfection by-products from the chlorination of Microcystis aeruginosa", Water Res., 44(6), 1934-1940. https://doi.org/10.1016/j.watres.2009.11.046
- Fawell, J. and Nieuwenhuijsen, M.J. (2003), "Contaminants in drinking water: Environmental pollution and health", British Med. Bull., 68(1), 199-208. https://doi.org/10.1093/bmb/ldg027
- Goslan, E.H., Seigle, C., Purcell, D., Henderson, R., Parsons, S.A., Jefferson, B. and Judd, S.J. (2017), "Carbonaceous and nitrogenous disinfection by-product formation from algal organic matter", Chemosphere, 170, 1-9. https://doi.org/10.1016/j.chemosphere.2016.11.148
- Hong, M.H. (2018), "Characteristics of chlorination byproducts formation by microcystis sp. and coelastrum sp. of hoeya reservoir", Master's Thesis, Pusan National University, Busan, Korea.
- Huang, W., Chu, H., Dong, B., Hu, M. and Yu, Y. (2015), "A membrane combined process to cope with algae blooms in water", Desalination, 355, 99-109. https://doi.org/10.1016/j.desal.2014.09.037
- Kurobe, T., Lehman, P.W., Haque, M.E., Sedda, T., Lesmeister, S. and Teh, S. (2018), "Evaluation of water quality during successive severe drought years within Microcystis blooms using fish embryo toxicity tests for the San Francisco Estuary, California", Sci. Total Environ., 610-611, 1029-1037. https://doi.org/10.1016/j.scitotenv.2017.07.267
- Lei, P., Zhang, J., Zhu, J., Tan, Q., Kwong, R.W.M., Pan, K., Jiang, T., Naderi, M. and Zhong, H. (2021), "Algal organic matter drives methanogen-mediated methylmercury production in water from eutrophic shallow lakes", Environ. Sci. Technol., 55(15), 10811-10820. https://doi.org/10.1021/acs.est.0c08395
- Li, L., Gao, N., Deng, Y., Yao, J. and Zhang, K. (2012), "Characterization of intracellular & extracellular algae organic matters (AOM) of Microcystic aeruginosa and formation of AOM-associated disinfection byproducts and odor & taste compounds", Water Res., 46, 1233-1240. https://doi.org/10.1016/j.watres.2011.12.026
- Liu, B., Qu, F., Liang, H., Bruggen, B.V.D., Cheng, X., Yu, H., Xu, G. and Li, G. (2017), "Microcystis aeruginosa-laden surface water treatment using ultrafiltration: Membrane fouling, cell integrity and extracellular organic matter rejection", Water Res., 112, 83-92. https://doi.org/10.1016/j.watres.2017.01.033
- OECD, (2013), Guideline for the testing of chemicals, test No. 236. Fish Embryo Toxicity (FET) Test. Paris, France.
- Paralkar, A. and Edzwald, J.K. (1996), "Effect of ozone on EOM and coagulation", J. AWWA, 88, 143-154. https://doi.org/10.1002/j.1551-8833.1996.tb06540.x
- Park, J.S., Ryu, J.H., Choi, T.I., Bae, Y.K., Lee, S., Kang, H.J. and Kim, C.H. (2016), "Innate color preference of zebrafish and its use in behavioral analyses", Mol Cells, 39(10), 750-755. https://doi.org/10.14348/molcells.2016.0173
- Pereira, A.C., Gomes, T., Ferreira Machado, F.M. and Rocha, T.L. (2019), "The zebrafish embryotoxicity test (ZET) for nanotoxicity assessment: from morphological to molecular approach", Environ. Pollut., 252, 1841-1853. https://doi.org/10.1016/j.envpol.2019.06.100
- Pflugmacher, S. (2002), "Possible allelopathic effects of cyanotoxins, with reference to microcystin-LR, in aquatic ecosystems", Environ. Toxicol., 17, 407-413. https://doi.org/10.1002/tox.10071
- Rao, N.R.H., Linge, K.L., Li, X., Joll, C.A., Khan, S.J. and Henderson, R.K. (2023), "Relating algal-derived extracellular and intracellular dissolved organic nitrogen with nitrogenous disinfection by-product formation", Water Res., 233, 119695(1)-119695(11). https://doi.org/10.1016/j.watres.2023.119695
- Richardson, S.D., Fasano. F., Ellington, J.J., Crumley, F.G., Buettner, K.M., Evans, J.J., Blount, B.C., Silva, L.K., Waite, T.J., Luther, G.W., Mckague, A.B., Miltner, R.J., Wagner, E.D. and Plewa, M.J. (2008), "Occurrence and mammalian cell toxicity of iodinated disinfection byproducts in drinking water", Environ. Sci. Technol., 42(22), 8330-8338. https://doi.org/10.1021/es801169k
- Schulte, C. and Nagel, R. (1994), "Testing acute toxicity in embryo of zebrafish, Brachydanio rerio, as an alternative to the acute fish test-preliminary results", Altern. Lab. Anim., 22(1), 12-19. https://doi.org/10.1177/026119299402200104
- Wang, W., Ye, B., Yang, L., Li, Y. and Wang, Y. (2007), "Risk assessment on disinfection by-products of drinking water of different water sources and disinfection processes", Environ. Int., 33(2), 219-225. https://doi.org/10.1016/j.envint.2006.09.009
- Yoon, H.J., Kim, M.J., Kim, J.R. and Kim, S.P. (2019), "A study on the behavior change of zebrafish for toxicity evaluation of residual psychoactive medication in wastewater treatment plant effluent", J. Korean Soc. Water Environ., 35(6), 574-579. https://doi.org/10.15681/KSWE.2019.35.6.574
- Yoon, H.J., Lim, Y.S., Maeng, S.K., Hong, Y.S., Byun, S.J., Kim, H.C., Kim, B.S. and Kim, S.P. (2020), "Impact of DBPs on the fate of zebrafish, Behavioral and lipid profile changes", Membr. Water Treat., 11(6), 391-398. https://doi.org/10.12989/mwt.2020.11.6.391