Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2019R1A2C1088527).
References
- Arifuzzaman and Anisuzzaman, M., (2022), "An initiative to correlate the SPT and CPT data for an alluvial deposit of Dhaka city", Int. J. Geo-Eng., 13(1), 5. https://doi.org/10.1186/s40703-021-00170-3.
- Bai, X.D., Cheng, W.C., Ong, D.E. and Li, G. (2021), "Evaluation of geological conditions and clogging of tunneling using machine learning", Geomech. Eng., 25(1), 59-73. https://doi.org/10.12989/gae.2021.25.1.059.
- Begemann, H.K.S. (1965), "The friction jacket cone as an aid in determining the soil profile", Proceedings of the 6th International Conference on Soil Mechanics and Foundation Engineering, ICSMFE, 1, 17-20.
- Bhargavi, P. and Jyothi, S. (2011), "Soil classification using data mining techniques: a comparative study". Int. J. Eng. Trends Technol., 2(1), 55-59.
- Bhattacharya, B. and Solomatine, D.P. (2006), "Machine learning in soil classification", Neural Networks, 19(2), 186-195. https://doi.org/10.1016/j.neunet.2006.01.005.
- Cai, Y., Li, J., Li, X., Li, D. and Zhang, L. (2018), "Estimating soil resistance at unsampled locations based on limited CPT data", B. Eng. Geol. Environ., 78, 3637-3648. https://doi.org/10.1007/s10064-018-1318-2.
- Cal, Y. (1995), "Soil classification by neural-network", Adv. Eng. Softw., 22(2), 95-97. https://doi.org/10.1016/0965-9978(94)00035-H
- Cao, Z. and Wang, Y. (2013), "Bayesian approach for probabilistic site characterization using cone penetration tests", J. Geotech. Geoenviron. Eng., 139(2), 267-276. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000765.
- Cao, Z., Zheng, S., Li, D. and Phoon, K. (2018), "Bayesian identification of soil stratigraphy based on soil behaviour type index". Can. Geotech. J., 56(4), 570-586. https://doi.org/10.1139/cgj-2017-0714.
- Cho, S. (2021), "A study on data mining techniques for soil classification method using cone penetration test results", Master's thesis, Kookmin University, South Korea.
- Cho, S., Kim, H.S. and Kim, H. (2023). "Locally specified CPT soil classification based on machine learning techniques", Sustainability, 15(4), 2914.
- Das, S.K. and Basudhar, P.K. (2009), "Utilization of self-organizing map and fuzzy clustering for site characterization using piezocone data", Comput. Geotech., 36(1-2), 241-248. https://doi.org/10.1016/j.compgeo.2008.02.005.
- Farhadi, M.S. (2019), "An integrated optimization-game theory model for CPT-based subground stratification", 2019 TC304 Student Contest.
- Demir, S. and Sahin, E.K. (2022). "Comparison of tree-based machine learning algorithms for predicting liquefaction potential using canonical correlation forest, rotation forest, and random forest based on CPT data", Soil Dyn. Earthq. Eng., 154, 107130. https://doi.org/10.1016/j.soildyn.2021.107130.
- Douglas, B.J. and Olsen, R.S. (1981), "Soil classification using electric cone penetrometer", Symposium on Cone Penetration Testing and Experience, Geotechnical Engineering Division, ASCE, St. Louis, Missouri, (Missouri, 1981), 209-227
- Juang, C.H., Jiang, T. and Christopher, R.A. (2001), "Three-dimensional site characterization: neural network approach", Geotechnique, 51(9), 799-809. https://doi.org/10.1680/geot.2001.51.9.799.
- Kwak, N.S. and Ko, T.Y. (2022), "Machine learning-based regression analysis for estimating Cerchar abrasivity index", Geomech. Eng., 29(3), 219-228. https://doi.org/10.12989/gae.2022.29.3.219.
- Kim, C.H., Im, J.C. and Kim, Y.S. (2008), "Study on the applicability of CPT based soil classification chart", KSCE J. Civil Environ. Eng. Res., 28(5), 293-301 (in Korean).
- Kim, C.H., Im, J.C., Kim, Y.S. and Joo, N.A. (2008). "New soil classification system using cone penetration test", J. Korean Geotech. Soc., 24(10), 57-70.
- Kim, H.S. and Kim, H.K. (2019). "Optimizing site-specific geostatistics to improve geotechnical spatial information in Seoul, South Korea", Arab. J. Geosci., 12, 1-20. https://doi.org/10.1007/s12517-018-4171-5.
- Kim, Y., Hong, J., Shin, J. and Kim, B. (2022), "Shield TBM disc cutter replacement and wear rate prediction using machine learning techniques", Geomech. Eng., 29(3), 249-258. https://doi.org/10.12989/gae.2022.29.3.249.
- Lee, J.S., Park, J., Kim, J. and Yoon, H.K. (2022), "Study of oversampling algorithms for soil classifications by field velocity resistivity probe". Geomech. Eng., 30(3), 247-258. https://doi.org/10.12989/gae.2022.30.3.247.
- Ma, Y. and He, H. (2013), "Imbalanced learning: foundations, algorithms, and applications", University of Rhode Island: Kingston, RI, USA, 2013.
- Najjar, Y.M. and Basheer, I.A. (1996), "Neural network approach for site characterization and uncertainty prediction", Geotechnical Special Publication, ASCE, 58(1), 134-148.
- Odeh, I.O.A., Chittleborough, D.J. and McBratney, A.B. (1992), "Soil pattern recognition with fuzzy-c-means: application to classification and soil-landform interrelationships", Soil Sci. Soc. Am. J., 56(2), 505-516. https://doi.org/10.2136/sssaj1992.03615995005600020027x
- Park, J., Lee, J.S., Jang, B.S., Min, D.H. and Yoon, H.K. (2022), "A comprehensive laboratory compaction study: Geophysical assessment". Geomech. Eng., 30(2), 211-218. https://doi.org/10.12989/gae.2022.30.2.211.
- Quinlan, J.R. (1986), "Induction of decision trees. Machine Learning", 1(1), 81-106
- Quinlan, J.R. (2008), "Top 10 algorithms in data mining", Knowl. Inf. Syst., 14(1), 1-37. https://doi.org/10.1007/s10115-007-0114-2.
- Rizzo, D.M., Lillys, T.P. and Dougherty, D.E. (1996), "Comparisons of site characterization methods using mixed data", Geotechnical Special Publication, ASCE, 58(1), 157-179.
- Robertson, P.K. (1990), "Soil classification using the cone penetration test". Can. Geotech. J., 27(1), 151-158. https://doi.org/10.1139/t90-014.
- Robertson, P.K. (2009), "Interpretation of cone penetration tests - a unified approach", Can. Geotech. J., 46(11), 1337-1355. https://doi.org/10.1139/T09-065.
- Robertson, P.K. (2016), "Cone penetration test -based soil behaviour type classification system - an updated". Can. Geotech. J., 53(12), 1910-1927. https://doi.org/10.1139/cgj2016-0044.
- Robertson, P.K. and Cabal, K.L. (2014), Guide to Cone Penetration Testing 6th Edition.
- Robertson, P.K. and Campanella, R.G. (1983), "SPT-CPT correlations", J. Geotech. Div. ASCE, 109(11), 1449-1460. https://doi.org/10.1061/(ASCE)0733-9410(1983)109:11(1449)
- Robertson, P.K. and Wride, C.E. (1998), "Evaluating cyclic liquefaction potential using the cone penetration test". Can. J. Geotech., 35(3), 442-459. https://doi.org/10.1139/t98-017.
- Robertson, P.K., Campanella, R.G., Gillespie, D. and Greig, J. (1986), "Use of piezometer cone data", Proceedings of the America Society of Civil Engineers, In-Situ 86 Specialty Conference, Blacksburg, Virginia.
- Soleimani Fard, H. and Goudarzy, M. (2021), "Influence of surcharge on cone penetration test results and the inspection of various approaches for capturing its effect: a case study", Int. J. Geo-Eng., 12(1), 17. https://doi.org/10.1186/s40703-021-00146-3.