DOI QR코드

DOI QR Code

Research Trends of Ni-based Catalysts on Steam Reforming of Bio-oils for H2 Production: A Review

수소 생산을 위한 바이오오일 수증기 개질 반응에서의 니켈계 촉매 연구동향

  • Da Hae Lee (Department of Chemical Engineering, Pukyong National University) ;
  • Hyeon Myeong Seo (Department of Chemical Engineering, Pukyong National University) ;
  • Yun Ha Song (Department of Chemical Engineering, Pukyong National University) ;
  • Jaekyoung Lee (Department of Chemical Engineering, Pukyong National University)
  • 이다해 (부경대학교 화학공학과) ;
  • 서현명 (부경대학교 화학공학과) ;
  • 송윤하 (부경대학교 화학공학과) ;
  • 이재경 (부경대학교 화학공학과)
  • Received : 2023.08.08
  • Accepted : 2023.08.22
  • Published : 2023.09.30

Abstract

Hydrogen has been gaining a lot of attention as a possible clean energy source that can aid in reaching carbon neutrality. Currently, hydrogen production has relied on the steam reforming of fossil fuels. However, due to the carbon dioxide emissions caused by this process, hydrogen production based on the steam reforming of bio-oil derived from biomass has been proposed as an alternative approach. In order to use this alternative approach efficiently, one of the key issues that must be overcome is that the complexity of bio-oil, which has a large molecular weight and diverse functional groups of hydrocarbons, promotes the catalytic deactivation of nickel-based catalysts. In this review, research efforts to improve nickel-based catalysts for the steam reforming of bio-oil have been discussed in terms of the active phase, support, and promoters. The active phases are involved in activating C-C and C-H bonds of high-molecular-weight hydrocarbons, and noble and transition metals can be utilized. In terms of the support and promoters, the catalytic deactivation of Ni-based catalysts can be inhibited by utilizing reactive lattice oxygen for support or by suppressing the acidity. The development of active and stable Ni-based reforming catalysts plays a critical role in clean hydrogen production based on bio-oils.

최근 탄소중립을 위한 청정에너지로 주목받고 있는 수소는 기존에 화석연료의 수증기 개질 반응을 통한 생산에 의존해왔다. 하지만, 이산화탄소의 방출로 인한 한계가 있어 바이오매스 유래 바이오오일의 수증기 개질 반응이 대안으로 제안되고 있다. 바이오오일의 큰 분자량과 다양한 작용기를 가진 탄화수소들이 섞여 있는 복잡성으로 인해 Ni/Al2O3 개질 촉매의 비활성화되는 문제가 발생해 니켈계 촉매의 개선이 필요하다. 본 총설에서는 바이오오일의 수증기 개질 반응에 이용되는 니켈계 촉매의 개선을 활성상, 담체 및 조촉매의 관점에서 정리했다. 활성상은 고분자의 탄화수소들의 C-C, C-H 결합을 끊어 분해 및 전환하고, 귀금속 및 전이금속이 활용될 수 있다. 담체 및 조촉매는 격자산소를 이용하거나 산점을 억제해 촉매의 비활성화의 주요원인인 탄소 침적을 억제하는 방식으로 촉매를 개선할 수 있다. 바이오오일에 기반한 청정수소 생산에 있어 우수한 성능의 개질 촉매 개발은 중요한 역할을 할 것이다.

Keywords

Acknowledgement

이 논문은 부경대학교 자율창의학술연구비(2021년)에 의하여 연구되었음.

References

  1. Ryi, S. K., Han, J. Y., Kim, C. H., Lim, H., and Jung, H. Y., "Technical Trends of Hydrogen Production," Clean Technol., 23(2), 121-132 (2017). 
  2. Abe, J. O., Popoola, A. P. I., Ajenifuja, E., and Popoola, O. M., "Hydrogen Energy, Economy and Storage: Review and Recommendation," Int. J. Hydrog. Energy, 44(29), 15072-15086 (2019). 
  3. Pudukudy, M., Yaakob, Z., Mohammad, M., Narayanan, B., and Sopian, K., "Renewable Hydrogen Economy in Asia - Opportunities and Challenges: An Overview," Renew. Sust. Energy Rev., 30, 743-757 (2014). 
  4. Momirlan, M. and Veziroglu, T. N., "Current Status of Hydrogen Energy," Renew. Sust. Energy Rev., 6(1), 141-179 (2002).  https://doi.org/10.1016/S1364-0321(02)00004-7
  5. Ewan, B. C. R. and Allen, R. W. K., "A Figure of Merit Assessment of the Routes to Hydrogen," Int. J. Hydrog. Energy, 30(8), 809-819 (2005).  https://doi.org/10.1016/j.ijhydene.2005.02.003
  6. Al-Qahtani, A., Parkinson, B., Hellgardt, K., Shah, N., and Guillen-Gosalbez, G., "Uncovering the True Cost of Hydrogen Production Routes Using Life Cycle Monetisation," Appl. Energy, 281, 115958 (2021). 
  7. Guerra, O. J., Eichman, J., Kurtz, J., and Hodge, B.-M., "Cost Competitiveness of Electrolytic Hydrogen," Joule, 3(10), 2425-2443 (2019).  https://doi.org/10.1016/j.joule.2019.07.006
  8. Park, Y. B., Lim, H., and Woo, H. C., "Hydrogen Production by Steam Reforming of Aqueous Bio-Oil from Marine Algae," Korean Chem. Eng. Res., 54(1), 94-100 (2016).  https://doi.org/10.9713/kcer.2016.54.1.94
  9. Klass, D. L., "Biomass for Renewable Energy and Fuels," Encyclopedia of Energy, 1(1), 193-212 (2004).  https://doi.org/10.1016/B0-12-176480-X/00353-3
  10. Kim, J. C., Seo, S. M., and Jae, J. H., "Dehydration of Lactic Acid to Bio-acrylic Acid over NaY Zeolites: Effect of Calcium Promotion and KOH Treatment," Clean Technol., 28(4), 269-277 (2022). 
  11. Choi, S. H., "A Mathematical Programming Method for Minimization of Carbon Debt of Bioenergy," Clean Technol., 27(3), 269-274 (2021). 
  12. Ha, J. M., "Catalytic Hydrodeoxygenation of Biomass-Derived Oxygenates: a Review," Clean Technol., 28(2), 174-181 (2022). 
  13. Giampietro, M. and Mayumi, K., "The Biofuel Delusion: The Fallacy of Large Scale Agro-Biofuels Production," Routledge (2009). 
  14. Sims, R. E. H., Mabee, W., Saddler, J. N., and Taylor, M., "An Overview of Second Generation Biofuel Technologies," Bioresour. Technol., 101(6), 1570-1580 (2010).  https://doi.org/10.1016/j.biortech.2009.11.046
  15. Park, J. I., Woo, H. C., and Lee, J. H., "Production of Bio-energy from Marine Algae: Status and Perspectives," Korean Chem. Eng. Res., 46(5), 833-844 (2008). 
  16. Liu, J., "Current Status and Prospect of Seaweed-based Biofuels as Renewable Energy Resource," Clean Technol., 28(2), 163-173 (2022). 
  17. Song, M. K., Hon, D. P., Seon, J. Y., and Woo, H. C., "Marine Brown Algae: A Conundrum Answer for Sustainable Biofuels Production," Renew. Sust. Energy Rev., 50, 782-792 (2015). 
  18. Balat, H. and Kirtay, E., "Hydrogen from Biomass - Present Scenario and Future Prospects," Int. J. Hydrog. Energy, 35(14), 7416-7426 (2010).  https://doi.org/10.1016/j.ijhydene.2010.04.137
  19. Ravichandran, S. R., Venkatachalam, C. D., Sengottian, M., Sekar, S., Kandasamy, S., Ramasamy Subramanian, K. P., Purushothaman, K., Lavanya Chandrasekaran, A., and Narayanan, M., "A Review on Hydrothermal Liquefaction of Algal Biomass on Process Parameters, Purification and Applications," Fuel, 313, 122679 (2022). 
  20. Silva, J., Rocha, C., Soria, M. A., and Madeira, L. M., "Catalytic Steam Reforming of Biomass-Derived Oxygenates for H2 Production: A Review on Ni-Based Catalysts," Chem. Eng., 6(3), 39 (2022). 
  21. Chen, J., Sun, J., and Wang, Y., "Catalysts for Steam Reforming of Bio-Oil: A Review," Ind. Eng. Chem. Res., 56(16), 4627-4637 (2017). 
  22. Zhang, C., "Review of Catalytic Reforming of Biomass Pyrolysis Oil for Hydrogen Production," Front. Chem., 10, 962587 (2022). 
  23. Setiabudi, H. D., Aziz, M. A. A., Abdullah, S., Teh, L. P., and Jusoh, R., "Hydrogen Production from Catalytic Steam Reforming of Biomass Pyrolysis Oil or Bio-Oil Derivatives: A Review," Int. J. Hydrog. Energy, 45(36), 18376-18397 (2020). 
  24. Ni, M., Leung, D. Y. C., Leung, M. K. H., and Sumathy, K., "An Overview of Hydrogen Production from Biomass," Fuel Process. Technol., 87(5), 461-472 (2006).  https://doi.org/10.1016/j.fuproc.2005.11.003
  25. Yao, D., Hu, Q., Wang, D., Yang, H., Wu, C., Wang, X., and Chen, H., "Hydrogen Production from Biomass Gasification Using Biochar as a Catalyst/Support," Bioresour. Technol., 216, 159-164 (2016). 
  26. Steinberg, M. and Cheng, H. C., "Modern and Prospective Technologies for Hydrogen Production from Fossil Fuels," Int. J. Hydrog. Energy, 14(11), 797-820 (1989).  https://doi.org/10.1016/0360-3199(89)90018-9
  27. Ochoa, A., Bilbao, J., Gayubo, A. G., and Castano, P., "Coke Formation and Deactivation During Catalytic Reforming of Biomass and Waste Pyrolysis Products: A Review," Renew. Sust. Energy Rev., 119, 109600 (2020). 
  28. Pafili, A., Charisiou, N. D., Douvartzides, S. L., Siakavelas, G. I., Wang, W., Liu, G., Papadakis, V. G., and Goula, M. A., "Recent Progress in the Steam Reforming of Bio-Oil for Hydrogen Production: A Review of Operating Parameters, Catalytic Systems and Technological Innovations," Catalysts, 11(12), 1526 (2021). 
  29. Wang, Y., Sun, K., Zhang, S., Xu, L., Hu, G., and Hu, X., "Steam Reforming of Alcohols and Carboxylic Acids: Importance of Carboxyl and Alcoholic Hydroxyl Groups on Coke Properties," J. Energy Inst., 98, 85-97 (2021). 
  30. Palmeri, N., Chiodo, V., Freni, S., Frusteri, F., Bart, J. C. J., and Cavallaro, S., "Hydrogen from Oxygenated Solvents by Steam Reforming on Ni/Al2O3 Catalyst," Int. J. Hydrog. Energy, 33(22), 6627-6634 (2008).  https://doi.org/10.1016/j.ijhydene.2008.07.064
  31. Li, X., Zhang, L., Zhang, S., Xu, L., and Hu, X., "Steam Reforming of Sugar and Its Derivatives: Functionality Dictates Thermal Properties and Morphologies of Coke," Fuel, 307, 121798 (2022). 
  32. Garcia-Gomez, N., Valecillos, J., Valle, B., Remiro, A., Bilbao, J., and Gayubo, A. G., "Combined Effect of Bio-Oil Composition and Temperature on the Stability of Ni Spinel Derived Catalyst for Hydrogen Production by Steam Reforming," Fuel, 326, 124966 (2022). 
  33. Bizkarra, K., Bermudez, J., Arcelus-Arrillaga, P., Barrio, V., Cambra, J., and Millan, M., "Nickel Based Monometallic and Bimetallic Catalysts for Synthetic and Real Bio-Oil Steam Reforming," Int. J. Hydrog. Energy, 43(26), 11706-11718 (2018).  https://doi.org/10.1016/j.ijhydene.2018.03.049
  34. Italiano, C., Bizkarra, K., Barrio, V., Cambra, J., Pino, L., and Vita, A., "Renewable Hydrogen Production Via Steam Reforming of Simulated Bio-Oil over Ni-Based Catalysts," Int. J. Hydrog. Energy, 44(29), 14671-14682 (2019).  https://doi.org/10.1016/j.ijhydene.2019.04.090
  35. Salehi, E., Azad, F. S., Harding, T., and Abedi, J., "Production of Hydrogen by Steam Reforming of Bio-Oil over Ni/Al2O3 Catalysts: Effect of Addition of Promoter and Preparation Procedure," Fuel Process. Technol., 92(12), 2203-2210 (2011). 
  36. Zhang, Y., Li, W., Zhang, S., Xu, Q., and Yan, Y., "Steam Reforming of Bio-Oil for Hydrogen Production: Effect of Ni-Co Bimetallic Catalysts," Chem. Eng. Technol., 35(2), 302-308 (2012). 
  37. Lee, S. C., Choi, J. H., Lee, C. W., Woo, S. H., Lee, J., and Woo, H. C., "H2 Production by Steam Reforming of Saccharina Japonica-Derived Liquefied Oils on NixCuy Hydrotalcite-Derived Catalysts," Renew. Energy, 191, 418-427 (2022). 
  38. Park, Y. B., Lim, H., and Woo, H. C., "Steam Reforming of Hydrothermal Liquefaction Liquid from Macro Algae over Ni-K2TixOy Catalysts," Clean Technol., 23(1), 104-112 (2017).  https://doi.org/10.7464/ksct.2017.23.1.104
  39. Santamaria, L., Artetxe, M., Lopez, G., Cortazar, M., Amutio, M., Bilbao, J., and Olazar, M., "Effect of CeO2 and MgO Promoters on the Performance of a Ni/Al2O3 Catalyst in the Steam Reforming of Biomass Pyrolysis Volatiles," Fuel Process. Technol., 198, 106223 (2020). 
  40. Yan, C.-F., Cheng, F.-F., and Hu, R.-R., "Hydrogen Production from Catalytic Steam Reforming of Bio-Oil Aqueous Fraction over Ni/CeO2-ZrO2 Catalysts," Int. J. Hydrog. Energy, 35(21), 11693-11699 (2010).  https://doi.org/10.1016/j.ijhydene.2010.08.083
  41. Ahn, S. Y., Jang, W. J., Shim, J. O., Jeon, B. H., and Roh, H. S., "CeO2-Based Oxygen Storage Capacity Materials in Environmental and Energy Catalysis for Carbon Neutrality: Extended Application and Key Catalytic Properties," Catal. Rev., 1-84 (2023). 
  42. Urasaki, K., Sekine, Y., Kawabe, S., Kikuchi, E., and Matsukata, M., "Catalytic Activities and Coking Resistance of Ni/Perovskites in Steam Reforming of Methane," Appl. Catal. A: Gen., 286(1), 23-29 (2005). 
  43. Singh, P. P., Nirmalkar, N., and Mondal, T., "Catalytic Steam Reforming of Simulated Bio-Oil for Green Hydrogen Production Using Highly Active LaNixCo1-xO3 Perovskite Catalysts," Sustain. Energy Fuels, 6(4), 1063-1074 (2022).  https://doi.org/10.1039/D1SE01786A
  44. Park, Y. B., Choi, J. H., Lee, S. C., Lee, C. W., Woo, S. H., Lee, J., and Woo, H. C., "Boosting Hydrogen Production by Reducible Oxygen Species over Ni/MTixOy Catalysts for the Steam Reforming of Liquefied Oil from Saccharina Japonica," Fuel Process. Technol., 238, 107486 (2022). 
  45. Medrano, J., Oliva, M., Ruiz, J., Garcia, L., and Arauzo, J., "Hydrogen from Aqueous Fraction of Biomass Pyrolysis Liquids by Catalytic Steam Reforming in Fluidized Bed," Energy, 36(4), 2215-2224 (2011).  https://doi.org/10.1016/j.energy.2010.03.059
  46. Valle, B., Remiro, A., Aguayo, A. T., Bilbao, J., and Gayubo, A. G., "Catalysts of Ni/α-Al2O3 and Ni/La2O3-αAl2O3 for Hydrogen Production by Steam Reforming of Bio-Oil Aqueous Fraction with Pyrolytic Lignin Retention," Int. J. Hydrog. Energy, 38(3), 1307-1318 (2013).  https://doi.org/10.1016/j.ijhydene.2012.11.014
  47. Hou, T., Yuan, L., Ye, T., Gong, L., Tu, J., Yamamoto, M., Torimoto, Y., and Li, Q., "Hydrogen Production by Low-Temperature Reforming of Organic Compounds in Bio-Oil over a CNT-Promoting Ni Catalyst," Int. J. Hydrog. Energy, 34(22), 9095-9107 (2009).  https://doi.org/10.1016/j.ijhydene.2009.09.012
  48. Garcia, L. A., French, R., Czernik, S., and Chornet, E., "Catalytic Steam Reforming of Bio-Oils for the Production of Hydrogen: Effects of Catalyst Composition," Appl. Catal. A: Gen., 201(2), 225-239 (2000). 
  49. Xie, H., Yu, Q., Yao, X., Duan, W., Zuo, Z., and Qin, Q., "Hydrogen Production Via Steam Reforming of Bio-Oil Model Compounds over Supported Nickel Catalysts," Journal of Energy Chemistry, 24(3), 299-308 (2015). https://doi.org/10.1016/S2095-4956(15)60315-1