DOI QR코드

DOI QR Code

Generalized photo-thermal interactions under variable thermal conductivity in a semi-conducting material

  • Aatef D. Hobiny (Department of Mathematics, Faculty of Science, King Abdulaziz University) ;
  • Ibrahim A. Abbas (Department of Mathematics, Faculty of Science, King Abdulaziz University) ;
  • C Alaa A. El-Bary (Basic and Applied Science Institute, Arab Academy for Science, Technology and Maritime Transport)
  • Received : 2022.05.01
  • Accepted : 2023.08.31
  • Published : 2023.09.25

Abstract

In this article, we explore the issue concerning semiconductors half-space comprised of materials with varying thermal conductivity. The problem is within the framework of the generalized thermoelastic model under one thermal relaxation time. The half-boundary space's plane is considered to be traction free and is subjected to a thermal shock. The material is supposed to have a temperature-dependent thermal conductivity. The numerical solutions to the problem are achieved using the finite element approach. To find the analytical solution to the linear problem, the eigenvalue approach is used with the Laplace transform. Neglecting the new parameter allows for comparisons between numerical findings and analytical solutions. This facilitates an examination of the physical quantities in the numerical solutions, ensuring the accuracy of the proposed approach.

Keywords

Acknowledgement

This research work was funded by Institutional Fund Projects under grant no. (IFPIP: 71-130-1443). The authors gratefully acknowledge technical and financial support provided by the Ministry of Education and King Abdulaziz University, DSR, Jeddah, Saudi Arabia

References

  1. Abbas, I., Hobiny, A. and Marin, M. (2020), "Photo-thermal interactions in a semi-conductor material with cylindrical cavities and variable thermal conductivity", J. Taibah Univ. Sci., 14(1), 1369-1376. https://doi.org/10.1080/16583655.2020.1824465.
  2. Abbas, I.A. (2011), "A two-dimensional problem for a fibre-reinforced anisotropic thermoelastic half-space with energy dissipation", Sadhana. 36(3), 411-423. https://doi.org/10.1007/s12046-011-0025-5.
  3. Abbas, I.A. (2014), "Analytical solution for a free vibration of a thermoelastic hollow sphere", Mech. Based Des. Struct. Mach., 43(3), 265-276. https://doi.org/10.1080/15397734.2014.956244.
  4. Abbas, I.A. (2015), "Eigenvalue approach on fractional order theory of thermoelastic diffusion problem for an infinite elastic medium with a spherical cavity", Appl. Math. Model., 39(20), 6196-6206. https://doi.org/10.1016/j.apm.2015.01.065.
  5. Abbas, I.A., Alzahrani, F.S. and Elaiw, A. (2018), "A DPL model of photothermal interaction in a semiconductor material", Waves Random Complex Media. 29(2), 328-343. https://doi.org/10.1080/17455030.2018.1433901.
  6. Abbas, I.A. and Kumar, R. (2014), "Deformation due to thermal source in micropolar generalized thermoelastic half-space by finite element method", J. Comput. Theor. Nanosci., 11(1), 185-190. https://doi.org/10.1166/jctn.2014.3335.
  7. Ailawalia, P. and Kumar, A. (2019), "Ramp type heating in a semiconductor medium under photothermal theory", Silicon. 12(2), 347-356. https://doi.org/10.1007/s12633-019-00130-8.
  8. Alzahrani, F.S. and Abbas, I.A. (2019), "Photo-thermo-elastic interactions without energy dissipation in a semiconductor half-space", Results Phys., 15. https://doi.org/10.1016/j.rinp.2019.102805.
  9. Crump, K.S. (1976), "Numerical inversion of laplace transforms using a fourier series approximation", J. ACM (JACM). 23(1), 89-96. https://doi.org/10.1145/321921.321931.
  10. Das, N.C., Lahiri, A. and Giri, R.R. (1997), "Eigenvalue approach to generalized thermoelasticity", Indian J. Pure Appl. Mathem., 28(12), 1573-1594.
  11. Eftekhari, S.A. (2018), "A coupled Ritz-finite element method for free vibration of rectangular thin and thick plates with general boundary conditions", Steel Compos. Struct., 28(6), 655-670. https://doi.org/10.12989/scs.2018.28.6.655.
  12. Ezzat, M.A. and El-Bary, A.A. (2016), "Effects of variable thermal conductivity and fractional order of heat transfer on a perfect conducting infinitely long hollow cylinder", Int. J. Therm. Sci., 108, 62-69. https://doi.org/10.1016/j.ijthermalsci.2016.04.020.
  13. Ezzat, M.A. and El-Bary, A.A. (2017), "Fractional magneto-Thermoelastic materials with phase-lag Green-Naghdi theories", Steel Compos. Struct., 24(3), 297-307. https://doi.org/10.12989/scs.2017.24.3.297.
  14. Ghasemi, S.E., Hatami, M. and Ganji, D.D. (2014), "Thermal analysis of convective fin with temperature-dependent thermal conductivity and heat generation", Case Stud. Therm. Eng., 4 1-8. https://doi.org/10.1016/j.csite.2014.05.002.
  15. He, C.F., Lu, G.G., Shan, X.N., Sun, Y.F., Li, T., Qin, L., Yan, C.L., Ning, Y.Q. and Wang, L.J. (2005). "Theoretical analysis of 980nm high power Vertical External-cavity Surface-emitting Semiconductor Laser (VECSEL)", Proceedings of SPIE - The International Society for Optical Engineering. https://doi.org/10.1117/12.667161
  16. Hobiny, A. and Abbas, I. (2019), "A GN model on photothermal interactions in a two-dimensions semiconductor half space", Results Phys., 15. https://doi.org/10.1016/j.rinp.2019.102588.
  17. Hobiny, A., Alzahrani, F., Abbas, I. and Marin, M. (2020), "The Effect of Fractional Time Derivative of Bioheat Model in Skin Tissue Induced to Laser Irradiation", Symmetry, 12(4), 1-10. https://doi.org/10.3390/sym12040602.
  18. Hobiny, A.D. and Abbas, I. (2022), "The impacts of variable thermal conductivity in a semiconducting medium using finite element method", Case Stud. Therm. Eng., 31. https://doi.org/10.1016/j.csite.2022.101773.
  19. Hobiny, A.D. and Abbas, I.A. (2018), "Theoretical analysis of thermal damages in skin tissue induced by intense moving heat source", Int. J. Heat Mass Transf., 124 1011-1014. https://doi.org/10.1016/j.ijheatmasstransfer.2018.04.018.
  20. Kaur, I., Lata, P. and Singh, K. (2020), "Forced flexural vibrations in a thin nonlocal rectangular plate with Kirchhoff's thin plate theory", Int. J. Struct. Stab. Dyn., 20(09), 2050107. https://doi.org/10.1142/S0219455420501072
  21. Khoukhi, M., Abdelbaqi, S. and Hassan, A. (2020), "Transient temperature change within a wall embedded insulation with variable thermal conductivity", Case Stud. Therm. Eng., 20. https://doi.org/10.1016/j.csite.2020.100645.
  22. Kumar, R., Vashishth, A.K. and Ghangas, S. (2019), "Variable thermal conductivity approach for bioheat transfer during thermal ablation", Arab J. Basic Appl. Sc., 26(1), 78-88. https://doi.org/10.1080/25765299.2019.1566982.
  23. Lahiri, A., Das, B. and Sarkar, S. (2010). "Eigenvalue approach to thermoelastic interactions in an unbounded body with a spherical cavity", Proceedings of the World Congress on Engineering
  24. Lata, P. (2018), "Effect of energy dissipation on plane waves in sandwiched layered thermoelastic medium", Steel Compos. Struct., 27(4), 439-451. https://doi.org/10.12989/scs.2018.27.4.439.
  25. Lata, P., Kaur, I. and Singh, K. (2020), "Transversely isotropic thin circular plate with multi-dual-phase lag heat transfer", Steel Compos. Struct., 35(3), 343-351. https://doi.org/10.12989/SCS.2020.35.3.343.
  26. Lata, P. and Singh, S. (2021), "Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer", Steel Compos. Struct., 38(2), 141-150. https://doi.org/10.12989/scs.2021.38.2.141.
  27. Lata, P. and Singh, S. (2020), "Effects of nonlocality and two temperature in a nonlocal thermoelastic solid due to ramp type heat source", Arab J. Basic Appl. Sci., 27(1), 358-364. https://doi.org/10.12989/csm.2021.10.4.351
  28. Lata, P. and Singh, S. (2022), "Rayleigh wave propagation in a nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer", GEM-Int. J. Geomathem., 13(1), 5. https://doi.org/10.1007/s13137-022-00195-5
  29. Li, C., Tian, X. and He, T. (2019), "Analytical study of transient thermo-mechanical responses in a fractional order generalized thermoelastic diffusion spherical shell with variable thermal conductivity and diffusivity", Waves Random Complex Media. 31(6), 1083-1106. https://doi.org/10.1080/17455030.2019.1648910.
  30. Lotfy, K., Hassan, W., El-Bary, A.A. and Kadry, M.A. (2020), "Response of electromagnetic and Thomson effect of semiconductor medium due to laser pulses and thermal memories during photothermal excitation", Results Phys., 16. https://doi.org/10.1016/j.rinp.2019.102877.
  31. Lotfy, K., Tantawi, R.S. and Anwer, N. (2019), "Response of Semiconductor Medium of Variable Thermal Conductivity Due to Laser Pulses with Two-Temperature through Photothermal Process", Silicon. 11(6), 2719-2730. https://doi.org/10.1007/s12633-018-0062-3.
  32. Mahdy, A.M.S., Lotfy, K., El-Bary, A., Atef, H.M. and Allan, M. (2021), "Influence of variable thermal conductivity on wave propagation for a ramp-type heating semiconductor magneto-rotator hydrostatic stresses medium during photo-excited microtemperature processes", Waves Random Complex Media. https://doi.org/10.1080/17455030.2021.1886375.
  33. Mahdy, A.M.S., Lotfy, K., El-Bary, A. and Tayel, I.M. (2021), "Variable thermal conductivity and hyperbolic two-temperature theory during magneto-photothermal theory of semiconductor induced by laser pulses", Europ. Phys. J. Plus. 136(6). https://doi.org/10.1140/epjp/s13360-021-01633-3.
  34. Mahdy, A.M.S., Lotfy, K., El-Bary, A.A., Roshdy, E.M. and Abd El-Raouf, M.M. (2021), "Variable thermal conductivity during photo-thermoelasticy theory of semiconductor medium induced by laser pulses with hyperbolic two-temperature theory", Waves Random Complex Media. 1-23. https://doi.org/10.1080/17455030.2021.1969062.
  35. Mahdy, M.S., Lotfy, K., El-Bary, A.A., Roshdy, E.M. and Abd El-Raouf, M.M. (2021), "Variable thermal conductivity during photo-thermoelasticy theory of semiconductor medium induced by laser pulses with hyperbolic two-temperature theory", Waves Random Complex Media. https://doi.org/10.1080/17455030.2021.1969062.
  36. Mandelis, A., Nestoros, M. and Christofides, C. (1997), "Thermoelectronic-wave coupling in laser photothermal theory of semiconductors at elevated temperatures", Optical Eng., 36(2), 459-468.
  37. Marin, M. (2010), "Harmonic vibrations in thermoelasticity of microstretch materials", J Vib Acoust Trans ASME. 132(4), 0445011-0445016. https://doi.org/10.1115/1.4000971.
  38. Marin, M., Othman, M.A. and Abbas, I. (2015), "An extension of the domain of influence theorem for generalized thermoelasticity of anisotropic material with voids", J. Comput. Theor. Nanosci., 12(8), 1594-1598. https://doi.org/10.1166/jctn.2015.3934.
  39. Mohamed, M.S., Lotfy, K., El-Bary, A. and Mahdy, A.M.S. (2021), "Absorption illumination of a 2D rotator semi-infinite thermoelastic medium using a modified Green and Lindsay model", Case Stud. Therm. Eng., 26. https://doi.org/10.1016/j.csite.2021.101165.
  40. Mohamed, R.A., Abbas, I.A. and Abo-Dahab, S.M. (2009), "Finite element analysis of hydromagnetic flow and heat transfer of a heat generation fluid over a surface embedded in a non-Darcian porous medium in the presence of chemical reaction", Comm. Nonlinear Sci. Numer. Simul., 14(4), 1385-1395. https://doi.org/10.1016/j.cnsns.2008.04.006.
  41. Othman, M.I.A. and Abouelregal, A.E. (2017), "Magnetothermoelstic analysis for an infinite solid cylinder with variable thermal conductivity due to harmonically varying heat", Microsyst Technol. 23(12), 5635-5644. https://doi.org/10.1007/s00542-017-3357-1.
  42. Othman, M.I.A., Said, S. and Marin, M. (2019), "A novel model of plane waves of two-temperature fiber-reinforced thermoelastic medium under the effect of gravity with three-phase-lag model", Int. J. Numer. Meth. Heat Fluid Flow. 29(12), 4788-4806. https://doi.org/10.1108/hff-04-2019-0359.
  43. Othman, M.I.A., Zidan, M.E.M. and Mohamed, I.E.A. (2021), "Dual-phase-lag model on thermo-microstretch elastic solid under the effect of initial stress and temperature-dependent", Steel Compos. Struct., 38(4), 355-363. https://doi.org/10.12989/scs.2021.38.4.355.
  44. Said, S.M. and Othman, M.I.A. (2020), "The effect of gravity and hydrostatic initial stress with variable thermal conductivity on a magneto-fiber-reinforced", Struct. Eng. Mech., 74(3), 425-434. https://doi.org/10.12989/sem.2020.74.3.425.
  45. Sherief, H.H. and Hamza, F.A. (2016), "Modeling of variable thermal conductivity in a generalized thermoelastic infinitely long hollow cylinder", Meccanica. 51(3), 551-558. https://doi.org/10.1007/s11012-015-0219-8.
  46. Song, Y., Cretin, B., Todorovic, D.M. and Vairac, P. (2008), "Study of photothermal vibrations of semiconductor cantilevers near the resonant frequency", J. Phys. D: Appl. Phys., 41(15). https://doi.org/10.1088/0022-3727/41/15/155106.
  47. Song, Y., Todorovic, D.M., Cretin, B., Vairac, P., Xu, J. and Bai, J. (2014), "Bending of Semiconducting Cantilevers Under Photothermal Excitation", Int. J. Thermoph., 35(2), 305-319. https://doi.org/10.1007/s10765-014-1572-x.
  48. Song, Y.Q., Bai, J.T. and Ren, Z.Y. (2012), "Study on the reflection of photothermal waves in a semiconducting medium under generalized thermoelastic theory", Acta Mech., 223(7), 1545-1557. https://doi.org/10.1007/s00707-012-0677-1.
  49. Todorovic, D.M. (2003), "Photothermal and electronic elastic effects in microelectromechanical structures", Rev. Sci. Instrum., 74(1), 578-581. https://doi.org/10.1063/1.1520324.
  50. Todorovic, D.M. (2003), "Plasma, thermal, and elastic waves in semiconductors", Rev. Sci. Instrum., 74(1), 582-585. https://doi.org/10.1063/1.1523133.
  51. Yang, W., Zhang, L., Zhang, H., Wang, F. and Li, X. (2020), "Numerical investigations of the effects of different factors on the displacement of energy pile under the thermo-mechanical loads", Case Stud. Therm. Eng., 21. https://doi.org/10.1016/j.csite.2020.100711.
  52. Youssef, H. (2005), "State-space approach on generalized thermoelasticity for an infinite material with a spherical cavity and variable thermal conductivity subjected to ramp-type heating", Canadian Appl. Mathem. Quart., 13(4), 369-390.
  53. Youssef, H.M. and Al-Lehaibi, E.A.N. (2021), "The vibration of a viscothermoelastic nanobeam of silicon nitride with variable thermal conductivity induced by ramp-type thermal loading", J. Therm. Anal. Calor. 146(6), 2387-2402. https://doi.org/10.1007/s10973-021-10615-7.
  54. Youssef, H.M. and El-Bary, A.A. (2018), "Theory of hyperbolic two-temperature generalized thermoelasticity", Mater. Phys. Mech., 40(2), 158-171. https://doi.org/10.18720/MPM.4022018_4.
  55. Zenkour, A.M. and Abbas, I.A. (2014), "Nonlinear transient thermal stress analysis of temperature-dependent hollow cylinders using a finite element model", Int. J. Struct. Stab. Dyn., 14(07). https://doi.org/10.1142/s0219455414500254.
  56. Zenkour, A.M. and Abouelregal, A.E. (2019), "Thermoelastic Interactions in an Infinite Orthotropic Continuum of a Variable Thermal Conductivity with a Cylindrical Hole", Iran. J. Sci. Technol. Trans. Mech. Eng., 43(2), 281-290. https://doi.org/10.1007/s40997-017-0117-x.