참고문헌
- Abdollahi, A., Peco, C., Millan, D., Arroyo, M. and Arias, I. (2014), "Computational evaluation of the flexoelectric effect in dielectric solids", J. App. Phys., 116, 093502. https://doi.org/10.1063/1.4893974.
- Amir, S., Khorasani, M. and Zarei, H.B. (2018), "Buckling analysis of nanocomposite sandwich plates with piezoelectric face sheets based on flexoelectricity and first-order shear deformation theory", J. Sand. Struct. Mat., 22(7), 1-24. https://doi.org/10.1177/1099636218795385.
- Amir, S., Zarei, H.B.A. and Khorasani, M. (2020), "Flexoelectric vibration analysis of nanocomposite sandwich plates", Mech. Bas. Des. Struct. Mach. An Int. J., 48(2), 146-163. https://doi.org/10.1080/15397734.2019.1624175.
- Akhavan, H., Hashemi, S.H., Taher, H.R.D., Alibeigloo, A. and Vahabi, S. (2009), "Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part I: Buckling analysis", Comp. Mat. Sci., 44, 968-978. https://doi.org/10.1016/j.commatsci.2008.07.004.
- Balubaid, M., Tounsi, A. and Dakhel, B. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comp. Conc., 24(6), 579-586. https://doi.org/10.12989/cac.2019.24.6.579.
- Baferani, A.H., Saidi, A.R. and Ehteshami, H. (2011), "Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation", Comp. Struct., 93, 1842-1853. https://doi.org/10.1016/j.compstruct.2011.01.020.
- Duc, D.H., Thom, D.V., Cong, P.H., Minh, P.V. and Nguyen, N.X. (2022), "Vibration and static buckling behavior of variable thickness flexoelectric nanoplates", Mech. Based Des. Struct. Mach., https://doi.org/10.1080/15397734.2022.2088558.
- Dung, N.T., Minh, P.V., Hung, H.M.and Tien, D.M. (2021), "The third-order shear deformation theory for modeling the static bending and dynamic responses of piezoelectric bidirectional functionally graded plates", Adv. Mater. Sci. Eng., 2021, 1-15. https://doi.org/10.1155/2021/5520240.
- Ebrahimi, F. and Barati, M.R. (2017), "Modeling of smart magnetically affected flexoelectric/piezoelectric nanostructures incorporating surface effects", Nan. Nan., 7, 1-11. https://doi.org/10.1177/1847980417713106.
- Ebrahimi, F. and Barati, M.R. (2019), "Dynamic modeling of embedded nanoplate systems incorporating flexoelectricity and surface effects", Micr. Tech., 25, 175-187. https://doi.org/10.1007/s00542-018-3946-7.
- Farzad, E. and Mahsa, K. (2018), "Nonlocal and surface effects on the buckling behavior of flexoelectric sandwich nanobeams", Mech. Adv Mat. Struct., 25(11), 943-952. https://doi.org/10.1080/15376494.2017.1329468.
- Ghobadi, A., Beni, Y.T. and Zurd, K.K. (2021), "Porosity distribution effect on stress, electric field and nonlinear vibration of functionally graded nanostructures with direct and inverse flexoelectric phenomenon", Comp. Struct., 259, 113220. https://doi.org/10.1016/j.compstruct.2020.113220.
- Ghobadi, A., Beni, Y.T. and Golestanian, H. (2020), "Nonlinear thermo-electromechanical vibration analysis of size-dependent functionally graded flexoelectric nano-plate exposed magnetic field", Arch. App. Mech., 90, 2025-2070. https://doi.org/10.1007/s00419-020-01708-0.
- Hieu, N.T., Do, V.T., Thai, N.D., Long, T.D. and Van Minh, P. (2020), "Enhancing the quality of the characteristic transmittance curve in the infrared region of range 2.5-7 µ m of the Optical Magnesium Fluoride (MgF2) ceramic using the hot-pressing technique in a vacuum environment", Adv. Mater. Sci. Eng., 2020. https://doi.org/10.1155/2020/7258431.
- Kundalwal, S.I. and Madhur, G. (2022), "Interdependent effects of surface and flexoelectricity on the electromechanical behavior of BNRC nanoplate", Mech. Mat., 175, 104483. https://doi.org/10.1016/j.mechmat.2022.104483.
- Lam, K.Y., Wang, C.M. and He, X.Q. (2000), "Canonical exact solutions for Levy-plates on two-parameter foundation using Green's functions", Eng. Struc., 22(4), 364-378. https://doi.org/10.1016/S0141-0296(98)00116-3.
- Liang, X., Yang, W., Hu, S. and Shen, S. (2016), "Buckling and vibration of flexoelectric nanofilms subjected to mechanical loads", J. Phys. D: App. Phys., 49, 115307. https://doi.org/10.1088/0022-3727/49/11/115307.
- Minh, P. Van, Thai, L.M., Luat, D.T. and Vu, N.D.A. (2022), "Static bending analysis of nanoplates on discontinuous elastic foundation with flexoelectric effect", J. Sci. Tech., 17(5). https://doi.org/10.56651/lqdtu.jst.v17.n05.529.
- Naskar, S., Shingare, K.B., Mondal, S. and Mukhopadhyay, T. (2022), "Flexoelectricity and surface effects on coupled electromechanical responses of graphene reinforced functionally graded nanocomposites: A unified size-dependent semi-analytical framework", Mech. Syst. Sig. Proc., 169, 108757. https://doi.org/10.1016/j.ymssp.2021.108757.
- Reza, A. and Raheb, G. (2016), "Size-dependent nonlinear vibrations of first-order shear deformable magneto-electrothermo elastic nanoplates based on the nonlocal elasticity theory", Int. J. App. Mech., 08(4), 1650053. https://doi.org/10.1142/S1758825116500538.
- Shingare, K.B. and Kundalwal, S.I. (2019), "Static and dynamic response of graphene nanocomposite plates with flexoelectric effect", Mech. Mat., 134: 69-84. https://doi.org/10.1016/j.mechmat.2019.04.006
- Shingare, K.B. and Naskar, S. (2022), "Compound influence of surface and flexoelectric effects on static bending response of hybrid composite nanorod", J. Strain Anal. Eng. Des., 58(2), 73-90. https://doi.org/ 10.1177/03093247221096518.
- Shu, L.L, Wei, X.Y., Pang, T., Yao, X. and Wang, C.L. (2011), "Symmetry of flexoelectric coefficients in crystalline medium", J. Appl. Phys., 110, 104106. https://doi.org/10.1063/1.3662196.
- Tagantsev, A.K. and Yurkov, A.S. (2012), "Flexoelectric effect in finite samples", J. App. Phys., 112, 044103. https://doi.org/10.1063/1.4745037.
- Thai, H.T. and Ho, D.C. (2013), "Finite element formulation of various four unknown shear deformation theories for functionally graded plates", Fini. Elem. Anal. Des., 75, 50-61. https://doi.org/10.1016/j.finel.2013.07.003.
- Tho, N.C., Thanh, N.T., Tho, T.D., Van Minh, P. and Hoa, L.K. (2021), "Modelling of the flexoelectric effect on rotating nanobeams with geometrical imperfection", J. Brazil. Soc. Mech. Sci. Eng., 43(11). https://doi.org/10.1007/s40430-021-03189-w.
- Tuan, L.T., Dung, N.T., Van Thom, D., Van Minh, P. and Zenkour, A.M. (2021), "Propagation of non-stationary kinematic disturbances from a spherical cavity in the pseudo-elastic cosserat medium", Eur. Phys. J. Plus, 136(12). https://doi.org/10.1140/epjp/s13360-021-02191-4.
- Yang, W., Liang, X. and Shen, S. (2015), "Electromechanical responses of piezoelectric nanoplates with flexoelectricity", Acta Mech., 226, 3097-3110. https://doi.org/10.1007/s00707-015-1373-8.
- Yan, Z. and Jiang, L.Y. (2012), "Vibration and buckling analysis of a piezoelectric nanoplate considering surface effects and in-plane constraints", Proc. Royal Society A: Math. Phys. Eng. Scien., 468(2147), 3458-3475. https://doi.org/10.1098/rspa.2012.0214.
- Zhang, Z., Yan, Z. and Jiang, L. (2014), "Flexoelectric effect on the electroelastic responses and vibrational behaviors of a piezoelectric nanoplate", J. App. Phys., 116, 014307. https://doi.org/10.1063/1.4886315.
- Zhang, D.P., Lei, Y.J. and Adhikari, S. (2018), "Flexoelectric effect on vibration responses of piezoelectric nanobeams embedded in viscoelastic medium based on nonlocal elasticity theory", Acta Mech., 229, 2379-2392. https://doi.org/10.1007/s00707-018-2116-4.
- Zarepour, M., Hosseini, S.A.H. and Akbarzadeh, A.H. (2019), "Geometrically nonlinear analysis of Timoshenko piezoelectric nanobeams with flexoelectricity effect based on Eringen's differential model", App. Math. Mod., 69, 563-582. https://doi.org/10.1016/j.apm.2019.01.001.
- Zeng, S., Wang, B.L. and Wang, K.F. (2019), "Nonlinear vibration of piezoelectric sandwich nanoplates with functionally graded porous core with consideration of flexoelectric effect", Comp. Struct., 207, 340-351. https://doi.org/10.1016/j.compstruct.2018.09.040.
- Zubko, P., Catalan, G. and Tagantsev, A.K. (2013), "Flexoelectric Effect in Solids", Ann. Rev. Mat. Res., 43, 387-421. https://doi.org/10.1146/annurev-matsci-071312-121634.
- Zur, K.K., Arefi, M., Kim, J. and Reddy, J.N. (2020), "Free vibration and buckling analyses of magneto-electro-elastic FGM nanoplates based on nonlocal modified higher-order sinusoidal shear deformation theory", Comp. Part B., 182, 107601. https://doi.org/10.1016/j.compositesb.2019.107601.
- Pankaj, V.K. and Subrata, K.P. (2020), "Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect", Steel Comp. Struct., 34(2), 279-288. https://doi.org/10.12989/scs.2020.34.2.279.
- Mehmet, A. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Comp. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
- Gui-Lin, S. (2020), "Wave propagation of FG polymer composite nanoplates reinforced with GNPs", Steel Comp. Struct., 37(1), 27-35. https://doi.org/10.12989/scs.2020.37.1.027.
- Mohammed, A.A., Raad, M. F., Ridha, A.A. and Nadhim, M. F. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Comp. Struct., 35(1), 147-157. https://doi.org/10.12989/scs.2020.35.1.147.
- Raad, M.F., Ridha, A.A. and Nadhim, M.F. (2020), "Nonlocal nonlinear dynamic behavior of composite piezo-magnetic beams using a refined higher-order beam theory", Steel Comp. Struct., 35(4), 545-554. https://doi.org/10.12989/scs.2020.35.4.545.
- Allah, M.J., Abdelaziz, T. and Youssef, B. (2022), "Nonlinear dynamic analysis of porous functionally graded materials based on new third-order shear deformation theory", Steel Comp. Struct., 43(1), 1-17. https://doi.org/10.12989/scs.2022.43.1.001.
- Le, M.T., Doan, T.L., Van, B.P., Phung, V.M. and Do, V.T. (2022), "Finite element modeling of mechanical behaviors of piezoelectric nanoplates with flexoelectric effects", Arch. App. Mech., 92, 163-182. https://doi.org/10.1007/s00419-021-02048-3.
- Duc, H.D., Ashraf, M.Z. and Do, V.T. (2022), "Finite element modeling of free vibration of cracked nanoplates with flexoelectric effects", The Euro. Phys. J. Plus., 137, 447. https://doi.org/10.1140/epjp/s13360-022-02631-9.
- Pham, T.D., Doan, T.L. and Do, V.T. (2016), "Free vibration of functionally graded sandwich plates with stiffeners based on the third-order shear deformation theory", Viet. J. Mech., 38(2), 103-122. https://doi.org/10.15625/0866-7136/38/2/6730.
- Nguyen, C.T., Do, V.T., Pham, H.C., Ashraf, M.Z., Duc, H.D. and Phung, V.M. (2023), "Finite element modeling of the bending and vibration behavior of three-layer composite plates with a crack in the core layer", Comp. Struct., 305, 116529. https://doi.org/10.1016/j.compstruct.2022.116529.
- Quang, D.V., Doan T.N., Luat, D.T. and Thom, D.V. (2022), "Static analysis and boundary effect of FG-CNTRC cylindrical shells with various boundary conditions using quasi-3D shear and normal deformations theory", Struct., 44, 828-850. https://doi.org/10.1016/j.istruc.2022.08.039.
- Thom, V.D., Duc, H.D., Nguyen, C.T. and Nguyen, D.D. (2022), "Thermal buckling analysis of cracked functionally graded plates", Int. J. Struct. Stab. Dyn., 22(8), 2250089. https://doi.org/10.1142/S0219455422500894.
- Tinh, Q.B., Duc, H.D., Thom, V.D., Sohichi, H. and Nguyen, D.D. (2016), "High frequency modes meshfree analysis of Reissner- Mindlin plates", J. Scie.: Adv. Mat. Dev., 1(3), 400-412. https://doi.org/10.1016/j.jsamd.2016.08.005.
- Hoang-Nam, N., Tran, C.T., Doan, T.L., Van-Duc, P., Do, V.T. and Phung, V.M. (2019), "Research on the buckling behavior of functionally graded plates with stiffeners based on the third-order shear deformation theory", Mate., 12(8), 1262. https://doi.org/10.3390/ma12081262.
- Al-Osta, M.A. (2022), "Wave propagation investigation of a porous sandwich FG plate under hygrothermal environments via a new first-order shear deformation theory", Steel Comp. Struct., 43(1), 117-127. https://doi: 10.12989/SCS.2022.43.1.117.
- Ahmed-Amine, D., Mohamed-Ouejdi, B., Drai, A., Mohamed, S.A.H., Mehmet, A., Tounsi, A. and Mohamed, AE. (2022), "Static analysis of functionally graded plate structures resting on variable elastic foundation under various boundary conditions", Act. Mech., 2022. https://doi.org/10.1007/s00707-022-03405-1.