DOI QR코드

DOI QR Code

Flexoelectric effect on buckling and vibration behaviors of piezoelectric nano-plates using a new deformation plate theory

  • Bui Van Tuyen (Faculty of Mechanical Engineering, Thuyloi University) ;
  • Du Dinh Nguyen (Faculty of Civil Engineering, Lac Hong University) ;
  • Abdelouahed Tounsi (Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals)
  • 투고 : 2020.12.22
  • 심사 : 2023.08.01
  • 발행 : 2023.09.25

초록

This paper uses a new type of deformation theory to establish the free vibration and static buckling equations of nanoplates resting on two-parameter elastic foundations, in which the flexoelectric effect is taken into account. The proposed approach used in this work is not only simpler than other higher-order shear deformation theories but also does not need any shear correction coefficients to describe exactly the mechanical responses of structures. The reliability of the theory is verified by comparing the numerical results of this work with those of analytical solutions. The results show that the flexoelectric effect significantly changes the natural frequency and the critical buckling load of the nanoplate compared with the case of neglecting this effect, especially when the plate thickness changes and with some different boundary conditions. These are new results that have not been mentioned in any publications but are meaningful in engineering practice.

키워드

참고문헌

  1. Abdollahi, A., Peco, C., Millan, D., Arroyo, M. and Arias, I. (2014), "Computational evaluation of the flexoelectric effect in dielectric solids", J. App. Phys., 116, 093502. https://doi.org/10.1063/1.4893974.
  2. Amir, S., Khorasani, M. and Zarei, H.B. (2018), "Buckling analysis of nanocomposite sandwich plates with piezoelectric face sheets based on flexoelectricity and first-order shear deformation theory", J. Sand. Struct. Mat., 22(7), 1-24. https://doi.org/10.1177/1099636218795385.
  3. Amir, S., Zarei, H.B.A. and Khorasani, M. (2020), "Flexoelectric vibration analysis of nanocomposite sandwich plates", Mech. Bas. Des. Struct. Mach. An Int. J., 48(2), 146-163. https://doi.org/10.1080/15397734.2019.1624175.
  4. Akhavan, H., Hashemi, S.H., Taher, H.R.D., Alibeigloo, A. and Vahabi, S. (2009), "Exact solutions for rectangular Mindlin plates under in-plane loads resting on Pasternak elastic foundation. Part I: Buckling analysis", Comp. Mat. Sci., 44, 968-978. https://doi.org/10.1016/j.commatsci.2008.07.004.
  5. Balubaid, M., Tounsi, A. and Dakhel, B. (2019), "Free vibration investigation of FG nanoscale plate using nonlocal two variables integral refined plate theory", Comp. Conc., 24(6), 579-586. https://doi.org/10.12989/cac.2019.24.6.579.
  6. Baferani, A.H., Saidi, A.R. and Ehteshami, H. (2011), "Accurate solution for free vibration analysis of functionally graded thick rectangular plates resting on elastic foundation", Comp. Struct., 93, 1842-1853. https://doi.org/10.1016/j.compstruct.2011.01.020.
  7. Duc, D.H., Thom, D.V., Cong, P.H., Minh, P.V. and Nguyen, N.X. (2022), "Vibration and static buckling behavior of variable thickness flexoelectric nanoplates", Mech. Based Des. Struct. Mach., https://doi.org/10.1080/15397734.2022.2088558.
  8. Dung, N.T., Minh, P.V., Hung, H.M.and Tien, D.M. (2021), "The third-order shear deformation theory for modeling the static bending and dynamic responses of piezoelectric bidirectional functionally graded plates", Adv. Mater. Sci. Eng., 2021, 1-15. https://doi.org/10.1155/2021/5520240.
  9. Ebrahimi, F. and Barati, M.R. (2017), "Modeling of smart magnetically affected flexoelectric/piezoelectric nanostructures incorporating surface effects", Nan. Nan., 7, 1-11. https://doi.org/10.1177/1847980417713106.
  10. Ebrahimi, F. and Barati, M.R. (2019), "Dynamic modeling of embedded nanoplate systems incorporating flexoelectricity and surface effects", Micr. Tech., 25, 175-187. https://doi.org/10.1007/s00542-018-3946-7.
  11. Farzad, E. and Mahsa, K. (2018), "Nonlocal and surface effects on the buckling behavior of flexoelectric sandwich nanobeams", Mech. Adv Mat. Struct., 25(11), 943-952. https://doi.org/10.1080/15376494.2017.1329468.
  12. Ghobadi, A., Beni, Y.T. and Zurd, K.K. (2021), "Porosity distribution effect on stress, electric field and nonlinear vibration of functionally graded nanostructures with direct and inverse flexoelectric phenomenon", Comp. Struct., 259, 113220. https://doi.org/10.1016/j.compstruct.2020.113220.
  13. Ghobadi, A., Beni, Y.T. and Golestanian, H. (2020), "Nonlinear thermo-electromechanical vibration analysis of size-dependent functionally graded flexoelectric nano-plate exposed magnetic field", Arch. App. Mech., 90, 2025-2070. https://doi.org/10.1007/s00419-020-01708-0.
  14. Hieu, N.T., Do, V.T., Thai, N.D., Long, T.D. and Van Minh, P. (2020), "Enhancing the quality of the characteristic transmittance curve in the infrared region of range 2.5-7 µ m of the Optical Magnesium Fluoride (MgF2) ceramic using the hot-pressing technique in a vacuum environment", Adv. Mater. Sci. Eng., 2020. https://doi.org/10.1155/2020/7258431.
  15. Kundalwal, S.I. and Madhur, G. (2022), "Interdependent effects of surface and flexoelectricity on the electromechanical behavior of BNRC nanoplate", Mech. Mat., 175, 104483. https://doi.org/10.1016/j.mechmat.2022.104483.
  16. Lam, K.Y., Wang, C.M. and He, X.Q. (2000), "Canonical exact solutions for Levy-plates on two-parameter foundation using Green's functions", Eng. Struc., 22(4), 364-378. https://doi.org/10.1016/S0141-0296(98)00116-3.
  17. Liang, X., Yang, W., Hu, S. and Shen, S. (2016), "Buckling and vibration of flexoelectric nanofilms subjected to mechanical loads", J. Phys. D: App. Phys., 49, 115307. https://doi.org/10.1088/0022-3727/49/11/115307.
  18. Minh, P. Van, Thai, L.M., Luat, D.T. and Vu, N.D.A. (2022), "Static bending analysis of nanoplates on discontinuous elastic foundation with flexoelectric effect", J. Sci. Tech., 17(5). https://doi.org/10.56651/lqdtu.jst.v17.n05.529.
  19. Naskar, S., Shingare, K.B., Mondal, S. and Mukhopadhyay, T. (2022), "Flexoelectricity and surface effects on coupled electromechanical responses of graphene reinforced functionally graded nanocomposites: A unified size-dependent semi-analytical framework", Mech. Syst. Sig. Proc., 169, 108757. https://doi.org/10.1016/j.ymssp.2021.108757.
  20. Reza, A. and Raheb, G. (2016), "Size-dependent nonlinear vibrations of first-order shear deformable magneto-electrothermo elastic nanoplates based on the nonlocal elasticity theory", Int. J. App. Mech., 08(4), 1650053. https://doi.org/10.1142/S1758825116500538.
  21. Shingare, K.B. and Kundalwal, S.I. (2019), "Static and dynamic response of graphene nanocomposite plates with flexoelectric effect", Mech. Mat., 134: 69-84. https://doi.org/10.1016/j.mechmat.2019.04.006
  22. Shingare, K.B. and Naskar, S. (2022), "Compound influence of surface and flexoelectric effects on static bending response of hybrid composite nanorod", J. Strain Anal. Eng. Des., 58(2), 73-90. https://doi.org/ 10.1177/03093247221096518.
  23. Shu, L.L, Wei, X.Y., Pang, T., Yao, X. and Wang, C.L. (2011), "Symmetry of flexoelectric coefficients in crystalline medium", J. Appl. Phys., 110, 104106. https://doi.org/10.1063/1.3662196.
  24. Tagantsev, A.K. and Yurkov, A.S. (2012), "Flexoelectric effect in finite samples", J. App. Phys., 112, 044103. https://doi.org/10.1063/1.4745037.
  25. Thai, H.T. and Ho, D.C. (2013), "Finite element formulation of various four unknown shear deformation theories for functionally graded plates", Fini. Elem. Anal. Des., 75, 50-61. https://doi.org/10.1016/j.finel.2013.07.003.
  26. Tho, N.C., Thanh, N.T., Tho, T.D., Van Minh, P. and Hoa, L.K. (2021), "Modelling of the flexoelectric effect on rotating nanobeams with geometrical imperfection", J. Brazil. Soc. Mech. Sci. Eng., 43(11). https://doi.org/10.1007/s40430-021-03189-w.
  27. Tuan, L.T., Dung, N.T., Van Thom, D., Van Minh, P. and Zenkour, A.M. (2021), "Propagation of non-stationary kinematic disturbances from a spherical cavity in the pseudo-elastic cosserat medium", Eur. Phys. J. Plus, 136(12). https://doi.org/10.1140/epjp/s13360-021-02191-4.
  28. Yang, W., Liang, X. and Shen, S. (2015), "Electromechanical responses of piezoelectric nanoplates with flexoelectricity", Acta Mech., 226, 3097-3110. https://doi.org/10.1007/s00707-015-1373-8.
  29. Yan, Z. and Jiang, L.Y. (2012), "Vibration and buckling analysis of a piezoelectric nanoplate considering surface effects and in-plane constraints", Proc. Royal Society A: Math. Phys. Eng. Scien., 468(2147), 3458-3475. https://doi.org/10.1098/rspa.2012.0214.
  30. Zhang, Z., Yan, Z. and Jiang, L. (2014), "Flexoelectric effect on the electroelastic responses and vibrational behaviors of a piezoelectric nanoplate", J. App. Phys., 116, 014307. https://doi.org/10.1063/1.4886315.
  31. Zhang, D.P., Lei, Y.J. and Adhikari, S. (2018), "Flexoelectric effect on vibration responses of piezoelectric nanobeams embedded in viscoelastic medium based on nonlocal elasticity theory", Acta Mech., 229, 2379-2392. https://doi.org/10.1007/s00707-018-2116-4.
  32. Zarepour, M., Hosseini, S.A.H. and Akbarzadeh, A.H. (2019), "Geometrically nonlinear analysis of Timoshenko piezoelectric nanobeams with flexoelectricity effect based on Eringen's differential model", App. Math. Mod., 69, 563-582. https://doi.org/10.1016/j.apm.2019.01.001.
  33. Zeng, S., Wang, B.L. and Wang, K.F. (2019), "Nonlinear vibration of piezoelectric sandwich nanoplates with functionally graded porous core with consideration of flexoelectric effect", Comp. Struct., 207, 340-351. https://doi.org/10.1016/j.compstruct.2018.09.040.
  34. Zubko, P., Catalan, G. and Tagantsev, A.K. (2013), "Flexoelectric Effect in Solids", Ann. Rev. Mat. Res., 43, 387-421. https://doi.org/10.1146/annurev-matsci-071312-121634.
  35. Zur, K.K., Arefi, M., Kim, J. and Reddy, J.N. (2020), "Free vibration and buckling analyses of magneto-electro-elastic FGM nanoplates based on nonlocal modified higher-order sinusoidal shear deformation theory", Comp. Part B., 182, 107601. https://doi.org/10.1016/j.compositesb.2019.107601.
  36. Pankaj, V.K. and Subrata, K.P. (2020), "Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect", Steel Comp. Struct., 34(2), 279-288. https://doi.org/10.12989/scs.2020.34.2.279.
  37. Mehmet, A. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Comp. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  38. Gui-Lin, S. (2020), "Wave propagation of FG polymer composite nanoplates reinforced with GNPs", Steel Comp. Struct., 37(1), 27-35. https://doi.org/10.12989/scs.2020.37.1.027.
  39. Mohammed, A.A., Raad, M. F., Ridha, A.A. and Nadhim, M. F. (2020), "Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory", Steel Comp. Struct., 35(1), 147-157. https://doi.org/10.12989/scs.2020.35.1.147.
  40. Raad, M.F., Ridha, A.A. and Nadhim, M.F. (2020), "Nonlocal nonlinear dynamic behavior of composite piezo-magnetic beams using a refined higher-order beam theory", Steel Comp. Struct., 35(4), 545-554. https://doi.org/10.12989/scs.2020.35.4.545.
  41. Allah, M.J., Abdelaziz, T. and Youssef, B. (2022), "Nonlinear dynamic analysis of porous functionally graded materials based on new third-order shear deformation theory", Steel Comp. Struct., 43(1), 1-17. https://doi.org/10.12989/scs.2022.43.1.001.
  42. Le, M.T., Doan, T.L., Van, B.P., Phung, V.M. and Do, V.T. (2022), "Finite element modeling of mechanical behaviors of piezoelectric nanoplates with flexoelectric effects", Arch. App. Mech., 92, 163-182. https://doi.org/10.1007/s00419-021-02048-3.
  43. Duc, H.D., Ashraf, M.Z. and Do, V.T. (2022), "Finite element modeling of free vibration of cracked nanoplates with flexoelectric effects", The Euro. Phys. J. Plus., 137, 447. https://doi.org/10.1140/epjp/s13360-022-02631-9.
  44. Pham, T.D., Doan, T.L. and Do, V.T. (2016), "Free vibration of functionally graded sandwich plates with stiffeners based on the third-order shear deformation theory", Viet. J. Mech., 38(2), 103-122. https://doi.org/10.15625/0866-7136/38/2/6730.
  45. Nguyen, C.T., Do, V.T., Pham, H.C., Ashraf, M.Z., Duc, H.D. and Phung, V.M. (2023), "Finite element modeling of the bending and vibration behavior of three-layer composite plates with a crack in the core layer", Comp. Struct., 305, 116529. https://doi.org/10.1016/j.compstruct.2022.116529.
  46. Quang, D.V., Doan T.N., Luat, D.T. and Thom, D.V. (2022), "Static analysis and boundary effect of FG-CNTRC cylindrical shells with various boundary conditions using quasi-3D shear and normal deformations theory", Struct., 44, 828-850. https://doi.org/10.1016/j.istruc.2022.08.039.
  47. Thom, V.D., Duc, H.D., Nguyen, C.T. and Nguyen, D.D. (2022), "Thermal buckling analysis of cracked functionally graded plates", Int. J. Struct. Stab. Dyn., 22(8), 2250089. https://doi.org/10.1142/S0219455422500894.
  48. Tinh, Q.B., Duc, H.D., Thom, V.D., Sohichi, H. and Nguyen, D.D. (2016), "High frequency modes meshfree analysis of Reissner- Mindlin plates", J. Scie.: Adv. Mat. Dev., 1(3), 400-412. https://doi.org/10.1016/j.jsamd.2016.08.005.
  49. Hoang-Nam, N., Tran, C.T., Doan, T.L., Van-Duc, P., Do, V.T. and Phung, V.M. (2019), "Research on the buckling behavior of functionally graded plates with stiffeners based on the third-order shear deformation theory", Mate., 12(8), 1262. https://doi.org/10.3390/ma12081262.
  50. Al-Osta, M.A. (2022), "Wave propagation investigation of a porous sandwich FG plate under hygrothermal environments via a new first-order shear deformation theory", Steel Comp. Struct., 43(1), 117-127. https://doi: 10.12989/SCS.2022.43.1.117.
  51. Ahmed-Amine, D., Mohamed-Ouejdi, B., Drai, A., Mohamed, S.A.H., Mehmet, A., Tounsi, A. and Mohamed, AE. (2022), "Static analysis of functionally graded plate structures resting on variable elastic foundation under various boundary conditions", Act. Mech., 2022. https://doi.org/10.1007/s00707-022-03405-1.